

Quinto Incontro Nazionale di Fisica Nucleare INFN 2022

Non-prompt D_s mesons production in pp and Pb–Pb collisions with ALICE

Stefano Politanò on behalf of the ALICE Collaboration, Politecnico and INFN Torino **5 Congresso INFN - Gruppo 3**, LNGS - May 2022

Why measure D_s production?

- proton-proton (pp) collisions
 - Test pQCD calculations
 - Insights on heavy-flavour hadronisation
 - Reference for Pb-Pb measurements
- Pb-Pb collisions
 - Heavy-quarks produced in shorter time scales than quark-gluon plasma (QGP) formation
 - Full system evolution
 - Energy loss in the medium
 - Hadronisation mechanism modification

How reconstruct D_s in ALICE?

• Full reconstruction of $D_s(c-\overline{s})$ decay-vertex topology in the hadronic decay $(D_s \rightarrow \phi \pi^+ \rightarrow K^+ K^- \pi^+)$

Background rejection
PID of the tracks

(fragmentation, coalescence)

• Strangeness-enhancement in QGP

Topological and kinematic selections

Non-prompt D_s production in small and large colliding systems

5 6 7 8 9 1 0

- First measurement!

modification factor $(R_{\Delta\Delta})$

• Non-prompt D_s meson **nuclear**

 $\mathrm{d}N_{\mathrm{AA}}/\mathrm{d}p_{T}$

• Pb-Pb

Prompt and non-prompt D_s

- Prompt D_s: sensitive to charm hadronisation
- Non-prompt D_s: sensitive to beauty hadronisation
 - Small fraction produced in nature (~5-10%)

- pp vs FONLL
 - Prompt D_s: predictions not available
 - Non-prompt D_s: predictions
 compatible with results

- Disentangle prompt and non-prompt
 - Machine Learning exploiting decay-vertex
 topologies and PID information

What's next for non-prompt D_s in Run 3 and beyond...

Major upgrades of ALICE ongoing

- ITS: crucial for heavy-flavour measurements
 - ITS2: completely new detector
 - ITS3: innermost layers based on truly cylindrical structure with ultra-thin curved sensor

Transport model implementing coalescence
 (TAMU) describes the trend within uncertainties

Prompt D_s: PLB 827 (2022) 136986 Non-prompt D_s: arXiv:2204.10386 Non-prompt D⁰: arXiv:2202.00815 TAMU: JHEP 03 081 (2016)

mail: stefano.politano@cern.ch