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Introduction

In this work we present a new computational rel-
ativistic quantum-mechanical method for calcu-
lating decays in astrophysical scenarios by con-
sidering both the temperature and density de-
pendence, in addition to the electronic and nu-
clear excited states (ES) population dynamics.

We apply it, for the first time, to :2*Cs — 12*Ba

and 12°Cs — 12°Ba B~ decays, crucial produc-
tion channels for Barium isotopes in Asymp-
totic Giant Branch (AGB) stars. In AGB stars,
indeed, the Ba abundance depends solely on
slow (s) process nucleosynthesis that, after the
n-capture on stable 193Cs, meets a branching
point at 1¥*Cs, where further n-captures (when
n-capture on 3*Cs feeds the longer-lived 1%°Cs,
the latter can -decay to 1°°Ba) compete with
B-decay, e.g. the i2*Cs — 134*Ba . New scenar-
i0s concerning the heavy-element nucleosynthe-
sis in stars were recently opened, offering new
constraints on the isotopic abundances gener-
ated in stellar processes, whose understanding
now depends also on improving the assessment

of nuclear reactions.

Method

Our approach is based on the calculation of the
total Hamiltonian

H — Hnucl _|_ He—e _|_ Hweak

o Luel  contains the interactions between
nucleons in the initial and final nuclear states
(the nucleon-nucleon interaction is described by
a semi-empirical scalar and vector relativistic
Wood-Saxon (WS) spherical symmetric poten-
tial)

e [, _. is the electron-electron Coulomb correla-
tion modelled via a local density approximation
(LDA) to the electron gas (Vi, oc p(r)'/3).
Electrons populate the energy levels according
to a Fermi-Dirac (FD) distribution

o H,.,. 1s the weak interaction Hamilto-
nian that is defined as the product of leptonic
(L*) and hadronic (H,) currents

G
Huyear = —H,L* + h.c.

V2

The leptonic current is factorized in the prod-
uct of the electron and neutrino quantum field
operators, while the hadronic one is separable
into neutron and proton field operators (the
decaying neutron acts as an independent parti-
cle correlated only geometrically to the core of
the remaining nucleons). Both are reckoned by
mean-field central potentials.

The main purpose is to compute the tran-
sition probability per unit time

Nz’—>f — QWTT(ﬁineakaHweak)5(Ei—Ef)—l—h.c.

where p;, = p;|i) (1| is a statistical mixture of
initial states [1) = |h;)®@|e;) and Py =} . |f) ([
a mixture of final states |f) = |hy) ®|es) @ |Uy).

Results
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Figure 1: Half-life of '**Cs (a) and of '*°Cs (b) vs. temperature (violet line) for n, = 10%° cm ™ using our
DHF calculations. They include: (a) the nuclear states at 47, 57, 37 of '**Cs and (b) the nuclear states
of '*°Cs at 5/27, 5/27, as well as the electronic DOF. In cyan (DHF-eGS) the half-life computed when
electrons are clamped in their ground state (GS). Orange and yellow lines show the maximum (centroid +o)
and minimum (centroid —o) values obtained by taking the log(ft) from the general systematics, while in the
blue line we used the centroid of the specific '°*Cs systematics (this does not exist for '*°Cs). Green lines

show the estimates by TY (Takahashi & Yokoi 1983, 1987). In panel a) we also plot (red line) the half-life
for a completely ionized '**Cs (bare Cs) and the nuclear GS to GS decay half-life (black line, GS-only). The

trend is similar for '*°Cs (not shown). Insets of a) and b) give the ratios between our ab-initio rates (AI)
and TY values for n, = 10°° cm~°. Figures ¢) and d) display '**Cs and '°°Cs half-lives according to our
model, including both nuclear and electronic DOFSs, vs. temperature and proton density as varying in the
interior of stars.

Conclusion

We find increases in the half-lives of Cs isotopes for T> 10% K as compared to previous works based
on systematics.

The observed changes are attributable to two factors in particular: the inclusion of both the nuclear
and the electronic ESs of parent and daughter nuclei, up to complete ionization. The presence of
fast-decaying nuclear ESs can in fact increase the rate by a factor of 15 at 100 keV and up to 23 at
1000 keV with respect to room temperature conditions.

Specifically, we note that:

e the 60 keV nuclear ES of 1%4(Cs is the fastest to 8—decay, with a rate ~ 80 times higher than the
GS-to-GS one;

e the rate increases with respect to GS decay only, close to a factor of ~ 3 at 20 keV, ~ 6 at 30 keV
and ~ 8 at 40 keV, which are the typical energies characterizing AGB stars. Similar effects for 13°Cs.
Our results are within the standard deviation of the general systematics and the use of the modified
rates to s-process computations in AGB stars reconciliates models and observations.
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