

K*(892)[±] multiplicity dependent analysis in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Antonina Rosano on behalf of the ALICE collaboration Università degli Studi di Messina, Dipartimento MIFT **INFN sezione di Catania**

Resonances are the perfect probes to

Motivation for studying $K*(892)^{\pm}$

- characterize the system formed in heavy-ion collisions at ultrarelativistic energies
- □ K*[±] resonance is particularly interesting because of its very short **lifetime** (~ 4 fm/*c*), comparable to the one of the hadronic phase \rightarrow it may be **sensitive** to the competing rescattering and regeneration effects

Small collision systems:

- > used as a **baseline** for heavy-ion collisions
- Recent results on resonance production show the onset of phenomena typical of heavy-ion collisions, like collective behaviour and suppression of the yield ratios of resonances to stable particles

K^{*±} resonance reconstruction

- Signal reconstructed via invariant mass distribution of the decay daughters
- Uncorrelated background estimated via event mixing technique

Involved sub-detectors:

ITS – Tracker / Trigger / Vertexer

- K* ⁰ multiplicity dependent analysis in **pp** collisions at **13 TeV** [1] shows **a** hint of suppression for K^{*0}/K with increasing multiplicity \rightarrow hadronic phase even for small systems?
- K^{*±} reconstructed via K^{*±} $\rightarrow \pi^{\pm}$ + K⁰_s > K^0_s identified via $K^0_s \rightarrow \pi^+ + \pi^-$ > π^{\pm} identified through d*E*/dx in the TPC
- K*0 reconstructed via $K^{*0} \rightarrow K^{\mp} + \pi^{\pm}$ > K^{+} and π^{\pm} directly identified by TPC and TOF detectors

- Inclusive analysis of K** production in pp collisions [2] shows lower systematic uncertainties on K^{*±} measurement than K^{*0} due to the different strategies used for K_{S}^{0} and K^{\pm} identification in ALICE
 - $\rightarrow K^{*\pm}$ measurements can complement previous K^{*0} results with smaller systematic uncertainties

 $K^{*\pm} p_T$ spectra, $\langle p_T \rangle$, and dN/dy

ΰ

□ After the uncorrelated background subtraction, the remaining distribution is fitted with a NR Breit-**Wigner + residual backgroud** (expol) function F_{BG} :

Ratio of particle yields: $K^{*\pm}/K_s^0$

II VOM

X V0M

 \rightarrow Process dominant at low p_{τ}

Comparable results for $K^{*\pm}$ and K^{*0} with lower systematic **uncertainties** for K^{*±} measurements

Summary

 $\star K^{*\pm}/K_{S}^{0}$ trend in pp collisions at $\sqrt{s} = 13$ TeV **confirmes** the K^{*0}/K_{S}^{0} suppression even within the systematic uncertainties \rightarrow rescattering effects in small systems?

- p_GeV/c • Upper panel: p_{τ} dependence of the particle ratios $K^{*\pm}/K_s^0$ for low (X) and high (II) multiplicity classes
- Lower panel (double ratios): high multiplicity values divided by the low multiplicity ones
- $\star K^{*\pm}/K_{S}^{0}$ suppression clearly noticeable for $p_{\tau} < 2.5 \text{ GeV}/c$

- First measurements of $K^{*\pm}$ production at |y| < 0.5 in pp collisions at \sqrt{s} =13 TeV for different multiplicity classes have been reported here.
- \checkmark Clear evidence for K* suppression is now obtained for pp collisions (results for p-Pb and Pb-Pb collisions can be found in [3]) thanks to reduced uncertainties on K^{*±} measurements than K^{*0} results.

Preliminary results show the typical onset of collective-like **phenomena** (hardening of the p_T spectra) \rightarrow possible hadronic **phase** (suppression of $K^{*\pm}/K_s^0$) in **small systems** too?

References

[1] ALICE Collab., Phys. Lett. B 807 (2020) 135501 [2] ALICE Collab Phys. Lett. B 828 (2022) 137013 [3] ALICE Collab Phys. Lett. B 802 (2020) 135225

> Quinto Incontro Nazionale di Fisica Nucleare (INFN 2022) 9-11 May 2022 LNGS - Assergi (AQ), Italy Antonina Rosano (arosano@unime.it)