Luca De Paolis on behalf of the SIDDHARTA-2 Collaboration Quinto Incontro Nazionale di Fisica Nucleare INFN 2022, LNGS

Nuclear Resonance effect in

Kaonic atom formation

 $n \approx \sqrt{\frac{\mu}{m_e}} \cdot n_e$, where μ is the reduced mass, m_e the electron mass and n_e is the principal quantum number of the outermost electron shell

MOLYBDENUM OFFERS A UNIQUE OPPORTUNITY TO **INVESTIGATE THE STRONG** $K^- - N$ **INTERACTION** WITH NUCLEAR RESONANCES

Nucleus	$E_{2^+} - E_{0^+}[keV]$	Levels mixed	$E_{n,l}-E_{n,l-2}[keV]$	$\Gamma_{n,l-2}[keV]$	Atten lines	Energy [keV]	Ref lines	Energy [keV]
⁹⁴ ₄₂ Mo	871	(6,5)+(4,3)	798.8	24.8	6 → 5	284.3	7 →6	171.1
⁹⁶ ₄₂ Mo	778	(6,5)+(4,3)	798.5	25.2	6 → 5	284.3	7 →6	171.1
⁹⁸ Mo	787.4	(6,5)+(4,3)	798.2	25.5	6 → 5	284.3	7 →6	171.1
$^{100}_{~42}Mo$	535.5	(6,5)+(4,3)	797.9	25.8	6 → 5	284.3	7 →6	171.2
⁹⁶ ₄₄ Ru	832.3	(6,5)+(4,3)	874.9	29.8	6 → 5	312.1	7 →6	187.9
¹²² ₅₀ Sn	1140.2	(6,5)+(4,3)	1105.8	70.4	6 → 5	403.5	7 →6	243.1
¹³⁸ ₅₆ Ba	1426.0	(6,5)+(4,3)	1346.3	126.1	6 → 5	505.7	7 →6	305.4
¹⁹⁸ Hg	411.8	(8,7)+(7,5)	406.1	7.8	8 → 7	403.2	9 →8	276.1

In kaonic ${}^{98}_{44}Mo$, the energy difference between 6h and 4f levels, 798.2 keV, is very nearly equal to the nuclear excitation energy of 787.4 keV.

- Isotope of $^{92}_{44}Mo$, in which the resonance doesn't occur, can be used as reference to measure the attenuations.
- X-rays measurable with High Purity Ge detectors (HPGe)

The E2 Nuclear Resonance Effect

When an atomic de-excitation energy is closely matched by a nuclear excitation energy, a resonance condition occurs, which produces an attenuation of some of the atomic x-ray lines from a resonant versus a normal isotope target.

The E2 Nuclear Resonance effect is a mixing of the atomic states due to the electrical quadrupole excitations of nuclear rotational states.

Quanto-mechanically, the effect mixes $(n, l, 0^+)$ levels with (n', l)- 2, 2⁺) *levels* producing a wave function which contains a small admixture of excited nucleus-deexcited atom wavefunctions:

$$\psi = \sqrt{1 - |\alpha|^2} \, \phi(n, l, 0^+) + \alpha \, \phi(n', l - 2, 2^+)$$

where
$$\alpha = \pm \frac{\langle n, l, 2^+ | H_q | n', l-2, 0^+ \rangle}{E_{(n,l,2^+)} - E_{(n,l,0^+)}}$$
 and H_Q is the *electric*

quadrupole interaction between the hadron and the nucleus.

The nuclear absorption rate increases very drasically (by a factor of several hundred) for each unit decrease of orbital angular momentum; thus for a decrease of $\Delta l = 2$, the factor may be around 10^{5} .

A very small admixture coefficient α (typically 1%) can mean a significant induced width!

INDUCED WIDTH: $\Gamma_{n,l}^{Ind} = |\alpha^2|\Gamma_{n',l-2}^0$

A significant weakening/attenuation of corresponding hadronic x-ray line and any lower lines can be observed.

The DAPNE collider provides low energy kaons (p ~ 127 MeV/c)

BSI HPGe detector with transistor reset preamplifier (TRP) **HPGe** active detector diameter ~60 mm, height ~60 mm. Data acquisition: analog electronics

#	Detection unit GCD-30185 characteristics Parameter	Value			
1.	Relative efficiency (with respect to 3" x 3" NaI detector and Co-60 source mounted 25 cm above the detector) at 1.33 MeV γ-photon	> 30 %			
2.	Energy resolution* at 122 keV 477.6 keV 1.33 MeV *Measured with spectrometric device MS Hybrid at input count rate 1000 pulses/sec, shaping time constant = 6 µsec	875 eV 1400 eV 1850 <u>+</u> 30 eV			
3.	Peak shape: • FWTM/FWHM • FW.02M/FWHM	< 1.9 < 2.65			
4.	Spectral Broadening of FWHM up to 100,000 counts/sec for 1.33 Mev	< 8 %			
5.	Peak position shift	<+/- 0.018 %			
6.	Peak to Compton ratio, not worse	58:1			
7.	Energy range of detector operation	40 keV - 3 MeV			
8.	Material of input window	Al			
9.	Cooling time	< 8 hours			
10.	Liquid nitrogen holding time in Dewar vessel	> 15 days			
11.	Dewar volume	301			
12.	Preamplifier (built – in detector capsule) with cooled FET and transistor reset preamplifier (TRP) • Preamplifier power supply is ±12 V with 9 pin connector compatible with NIM				

- TTL signal to shut down the HV: detector warm -0V; detector cold: +5V
- HV INHIBIT BNC

References:

- M. Leon, «Hadronic Atoms and Ticklish Nuclei: The E2 Nuclear Resonance Effect», United States: N. p., (1975).
 - S. Wycech, Nucl. Phys. A561, 607 (1993)
 - Nesterenko, D.A., Jokiniemi, L., Kotila, J. et al., Eur. Phys. J. A 58, 44 (2022)

WHY INVESTIGATE NUCLEAR RESONANCE **EFFECTS IN KAONIC MOLYBDENUM?**

- 1. To measure shift and width of the n=4level, not accessible by kaonic cascade, investigating deeply bound kaonic atoms.
- 2. The measurement of the attenuation α coefficients in $^{94}_{44}Mo$, $^{96}_{44}Mo$, $^{98}_{44}Mo$ and $^{100}_{44}Mo$ could provide fundamental information on kaon-nucleus strong interaction.
- 3. Isotope effects in the level shift and width would reveal sign of changes in the nuclear periphery when pair of neutrons are added to the lighest isotope $\binom{94}{44}Mo$
- 4. To study nuclear distribution in $^{98}_{44}Mo$, providing important details to investigate neutrinoless double beta $(0v\beta\beta)$ and twoneutrino double beta decay $(2v\beta\beta)$

Contact:

Email to: Luca.DePaolis@Inf.infn.it

IEASUREMENT WILL BE PERFORMED IN 2022/2023