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The origin of heavy elements in the Solar System
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H- and He-burning in TP-AGB stars
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The 13C-pocket: formation

* Protons can penetrate into the He-rich region at
each TDU (Third Dredge-Up) phenomenon

Which is the physical mechanism?

Classic models assume the *C-pocket formation

Many recent physical approaches:

* Opacity induced overshoot (Cristallo+ 2009, 2011, 2015)
* Convective Boundary Mixing (Battino+ 2016)
* Magnetic fields (Trippella+ 2016; Palmerini+ 2018)

=) bottom-up mechanism through

magnetic buoyancy

1a) Rotational shears promote magnetic fields?
1b) Fossil magnetic fields?

2) Magnetic structures reach the envelope

3) Protons are injested into the He-rich region

Convective
envelope
Turbolent
regime He-shell
Differential
rotation C-O degenerate core
Rigid body rotation
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Magnetic buoyancy

MagnetoHydroDynamics (MHD) solutions (Nucci & Busso 2014):
> No numerical approximations (exact analytic solution)
> Simple geometry: toroidal magnetic field

Equations:
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where k is the exponent of the density distribution: p(r) = —’;r"
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Implementation

* Exponential decay of the convective velocity _ |

(Straniero+ 2006, Cristallo+ 2009):

Parameters:
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> Radius extention of the overshooting region

> b

« Magnetic contribution (this work),
acting when the density
distribution is p o« rk:

Parameters:

> Layer “p” at the deepest coordinate from which

buoyancy starts

(can be identified from the corresponding —

critical toroidal B, value)

Udown (T) — U(Tp

s () ()
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> Starting velocity v, of the buoyant material

Calibration is needed!
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SiC Grains |

* We considered isotopic data including Sr and Ba isotope ratios in presolar SiC
grains.

We considered magnetic contribution to the partial mixing of hydrogen.

One stellar model: 2M Z=Z

Fixed value of B (0.1) and maximum envelope penetration (1.7 Hp)

Variable v, (2,4, 6 x107° cm s*) and B, (0.5, 1, 2 x10° G)
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The 13C-pocket: parametric space

e Our current best (not yet definitive) choice can be summarized as:

References

Cristallo+ 2009

Same amount of H-depleted
Radius extention of the overshooting region 1.7 Hp dredged-up material of
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SiC Grains Il

 Stellar models with different initial mass and metallicity
> different numbers of thermal pulses experienced
> different extention of 3C-pockets
> |sotopic ratios of mainstream grains are guite well reproduced
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Intrinsic C-rich AGB Stars

 Stellar models with close-to-solar metallicity
> Low [hs/Is]
> High [s/Fe]

« Does magnetism fade out for low-to-intermediate mass (3 to 6 MO)?
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Post- and Intrinsic C-rich AGB Stars |

 Stellar models with low metallicity
> [hs/Is] vs. [s/Fe] consistent with observations

> Models with opacity-induced overshoot only fail
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Post- and Intrinsic C-rich AGB Stars I

o Stellar models at different

metallicities
. . —e— 1.5M, —e— 2M,
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Summary |

> Most of what we know has been learned through a lengthy work with parameterized
models, trying to constrain the parameters gradually, from the increasing accuracy of
observations

> This allowed recently the development of physical models for the mixing
mechanisms required to produce the 3C neutron source.

> Taking into account magnetic fields in radiative regions might be crucial in modeling
the mixing episodes (e.g. through magnetic buoyancy).

> First outcomes confirms recent results from Trippella+ (2016), Palmerini+ (2018),
and Liu+ (2018, 2019)

> More extended and flatter *C-pocket

> The majority of isotopic ratios of mainstream grains are gquite well reproduced

> [hs/Is] vs. [s/Fe] and [hs/Is] vs. [Fe/H] consistent with observations of post-AGB and
intrinsic AGB stars

> Magnetism has (most problably) variable intensity
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r-process: basic ideas

e keyreactions: (A, Z)+neo (A+1,72)+y
« r-process requires initial highn_and T
> highn_ Ty << Todecay
> highn_ and T: (n, Y) ©(y, n) along isotopic chain
> steady abundances intra-chain with one dominant nucleus
e [-decay rates of dominant nuclei regulate inter-chain flow
« equilibrium freeze-out: n_drops and B-decays take over

S 12 22 Temperature = 4.20E+08 K
2 8 — Temperature [K] 20 o 3
S al — Density [g/cm 118 Density = 1.94E+02 g/ cm
2 ol — Heating rate [erg /s / q] 16 £ Heating rate = 1.61E+18 erg /s /g
=) 1 © 232
> _4l |14 £ Entropy = 5.01E+01 kB / baryon o 98 224 28
= a 220
S 8 112 & Ye=o0354 o 4 216
T
= 12}
o s
g- i _g‘ Abundance
@ —-20} 1072
o —24f
S -28 3
2 "1o3 10! 10? 10° 10
@ Time [s]
Unstable nuclide 107
0 Stable nuclide
= Missing nuclide '’
Sky | Net ¢
50 11 Closed neutron shell -6
nnnnnnnnnnnn lilippuner/skynet a8 10
e = Closed proton shell
o Time = 3.64E-01 s 107
w0 =360 ms
3134 10°
NS B 107
% H -
z 24 FF‘%:B:H 107 o 107
2 H .-
20 10° §
18 i ° 10
16 H - £ 10
14 n 0. 10 Fi
léz 40 [} -10 o
an 36 . _|_|_| 10 1
8 - 2 10
6 0 24 28 0 1074
4
2 1 18 Made with SkyNet by Jonas Lippuner 2 72 94 111 145 170 188 206 253 337
0 4 B —->N Adapted by D. Vescovl and 5. Cristallo neutrons 1% peak 2™ peak rare-earth 3™ peak fission material A 1072

Diego Vescovi - Genova, 2019 Nucleosynthesis across the Galaxy: AGB Stars and NMS



Neutron star mergers as r-process site

« r-process requires free n and seed nuclei (<A>, <Z>)

» seed properties/abundances depend on nuclear-statistical equilibrium (NSE)
freeze-out

 in adiabatic expansion, neutron-to-seed ratio depends on three parameters:

1) entropy s ~ T 3/p
2) Ye ~n /(nn+np) —— n /nseed xs3/ (Tdynye3)
3) t,,, (T(t) = Tyexp(-t/t, )

dyn (

high entropy r-process low entropy r-process

Possible scenarios hot CCSN winds BNS and BHNS mergers
MHD supernovae
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BNS merger + kilonova

Jet—ISM Shock (Afterglow) /q
Optical (hours—days) )
Radio (vesks-years) Basic ideas:
Ejecta—ISM Shock
P « radioactive decay of freshly
sinthetized r-process elements
v N in ejecta: release of nuclear
energy
% Kiloro, @
S « thermalization of high energy
T};\jgﬁeggg;c\;ﬁm decay products with ejecta

- <> O V_.. ° A~ « diffusion of thermal photons
during ejecta expansion
» thermal emission of photons at
photosphere

Metzger & Berger 12
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Properties of GW170817/AT2017gfo

17/08/17, GW+EM detection of an event compatible with BNS merger (LvC PRL 2017)
rather bright, nIR component, with a peak at ~ 5 days (red component)
bright, UV/O component, with a peak at ~ 1 day (blue component)
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Light curves; Pian, D’Avanzo+ 2017 (left); Tanvir+ 2017 (right)

> Kilonova models fail in explaining the early behavior of the UV and visible light curves

> The presence of a larger nuclear heating rate at t < 1 day can increase the light
curves by half a magnitude during the first day
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Heating rate vs. electron fraction Y,

> Q is usually approximated by an analytic fitting formula as Qp (t)=10"t; Y ergg™'s™"

> Detailed nucleosynthesis calculations show a complex dependence
> Heating rates normalized to Q'ﬁt point out that all the normalized heating rates
show considerable excess at different times
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Implementation and first tests

> Inclusion of new detailed nuclear heating rates obtained by nuclear network
calculations in an anisotropic, multicomponent kilonova model (Perego+ 2017)

> Coupled with a parallelized Monte Carlo Markov Chain (MCMC) algorithm.
> Goal: re-analize AT2017gfo data by computing the posterior distributions

associated to several different models

 First outcome (simple isotropic
dynamical ejecta) : 10%

> brighter lightcurve

L [erg/s]

Next steps:

1) different matter ejection
mechanisms (multi-component)

2) angular dependence
(anisotropy) 10% -

mkn_lightcurve LR.dat
mkn_lightcurve PBR.dat
mkn_lightcurve_None.dat
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Summary Il

>

>

Kilonova from GW170817 originates from the radioactive decay of heavy elements

Signature of r-process nucleosynthesis in ejecta from neutron star mergers

> Astrophysical site of the r-process is identified, but further observations are

>

necessary

Having identified the astrophysical site it becomes fundamental to reduce the
nuclear physics uncertainties

Lanthanide-rich for Y. =0.25

Insensitivity of the abundance pattern to the parameters of the merging system

because of an extremely Y_environment, which guarantees the occurrence of
several fission cycles before the r-process freezes out

Nuclear heating rates are, at the times relevant for the kilonova emission, uncertain
for a factor a few

Kilonova emission seems to be strongly affected by non-approximated heating rates
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