

Towards fast background simulation with the CLIC framework

Muon Collider meeting

N. Bartosik

INFN Torino

Optimising the background simulation

We start with 190M particles from each beam $[\mu^- + \mu^+]$

• simulating 1 bunch crossing takes 8 days [at 8 parallel threads]

Only hits in the short readout time window [~1 ns] are relevant

- assuming very conservative window: 10ns
- finding time of the initial MARS15 particle responsible for each hit

Nazar Bartosik

Optimising even further

Many hits from particles at t \leq 25ns still appear in the detector too late

Nazar Bartosik

Slow neutrons removed: hit energy

Comparing simulated hit energies at different levels of optimization

Nazar Bartosik

Slow neutrons removed: CAL hit positions

Comparing simulated hit positions at different levels of optimization

Nazar Bartosik

Simulation performance

Comparing the time needed to simulate 1 bunch crossing [at 8 threads]

selection	# of particles	CPU time
All MARS particles	380M	380 h
+ t < 25ns	98M (26%)	60 h (16%)
+ E _{kin} (n) > 70 MeV	80M (21%)	31 h (8%)
+ E _{kin} (n) > 150 MeV	78M (20%)	25 h (6.6%)
+ QGSP_BERT	78M (20%)	3 h (O.8%)

The safest optimization is: $t < 25ns + E_{kin}(n) > 150 \text{ MeV} \rightarrow \frac{25h}{bunch crossing}$

After all the particle selection, effect of switching to the QGSP_BERT physics list can be neglected \rightarrow we can simulate BIB at <u>3h/bunch crossing</u>

Next steps

- 1. Simulate ~20 bunch crossings: each split in 3K virtual events
- 2. Prepare a background overlay processor that picks each virtual event from a randomly selected bunch crossing

BACKUP

Nazar Bartosik

Slow neutrons removed: hit energy

Comparing simulated hit energies at different levels of optimization

Nazar Bartosik

Slow neutrons removed: TRK hit positions

Comparing simulated hit positions at different levels of optimization

Nazar Bartosik