Update systematic error due to intrinsic resolution

Riccardo Nunzio Pilato

Multiple scattering effects on the differential cross section

Parameterization of detector resolution

Effect of a miscalibration on the Gaussian core

3

What is the effect of a miscalibration of the Gaussian core on the differential cross section?

Intrinsic resolution for different experimental setups

1) my thesis: $\sigma_{CMS} = 26 \,\mu\text{m}$ L = 50 cm $\longrightarrow q_0 \simeq 74 \,\mu\text{rad}$

2) Test Run: $\sigma_{CMS} = 26 \,\mu\text{m}$ L = 100 cm $\longrightarrow q_0 \simeq 37 \,\mu\text{rad}$

3) ideal setup: $\sigma_{intr} = \frac{\sigma_{CMS}}{2} = 13 \,\mu\text{m}$ L = 100 cm \longrightarrow $q_0 \simeq 18 \,\mu\text{rad}$

Intrinsic resolution for different experimental setups

Conclusions

- Test Run setup: a 1% miscalibration on the intrinsic resolution of the tracker translates into a systematic effect ~1×10⁻⁵ on the knowledge of the differential cross section. It can be seen as a small bump at low θ_{e} .
- A single hit resolution of 13 µm makes a 1% systematic effect on the intrinsic resolution negligible.

BACKUP

24 electron samples. Each sample corresponds to a different energy.

Parameterization of the resolution function as a function of E_e

 $\sigma_G(E_e) = \sqrt{q_0^2 + q_1 E_e^{2 \cdot q_2}}$