HPXM2021 HIGH PRECISION X-RAY MEASUREMENTS

8-10 June 2021 - INFN-LNF, Online

New multichannel modular detection system based on Silicon Drift Detectors

Daniela Cirrincione

INFN – Trieste & University of Udine

New multichannel modular detection system based on Silicon Drift Detectors

A detection system specially designed and developed in order to optimize the potentials of XRF-XAFS sensitivity and efficiency is presented. It consists of 8 monolithic multipixel arrays, each with 8 (SDD) cells with a total area of 570 mm². Optimized to work in an energy range of 3-30 keV, this 64 channels integrated detection system includes ultra-low noise front-end electronics, dedicated acquisition system, digital filtering, temperature control and stabilization. Room temperature characterization tests at ELETTRA Synchrotron Trieste demonstrated very interesting results; they include an energy resolution at the Ka line of Mn 5.9 keV below 170 eV FWHM. The system is now installed and operating at the XRF-XAFS beam line of the SESAME Synchrotron light source in Jordan.

D. Cirrincione(1,2), M. Antonelli(1), G. Aquilanti(3), P. Bellutti(4,5), G. Bertuccio(6,7), G. Borghi(4,5), G. Cautero(3,1), F. Ficorella(4,5), M. Gandola(4), D. Giuressi(3,1), F. Mele(7,8), R.H. Menk(3,1), L. Olivi(3), G. Orzan(1), A. Picciotto(4,5), A. Rachevski(1), I. Rashevskaya(5), L. Stebel(3), G. Zampa(1), N Zampa(1,2), N. Zorzi(4,5) and A. Vacchi(1,2)

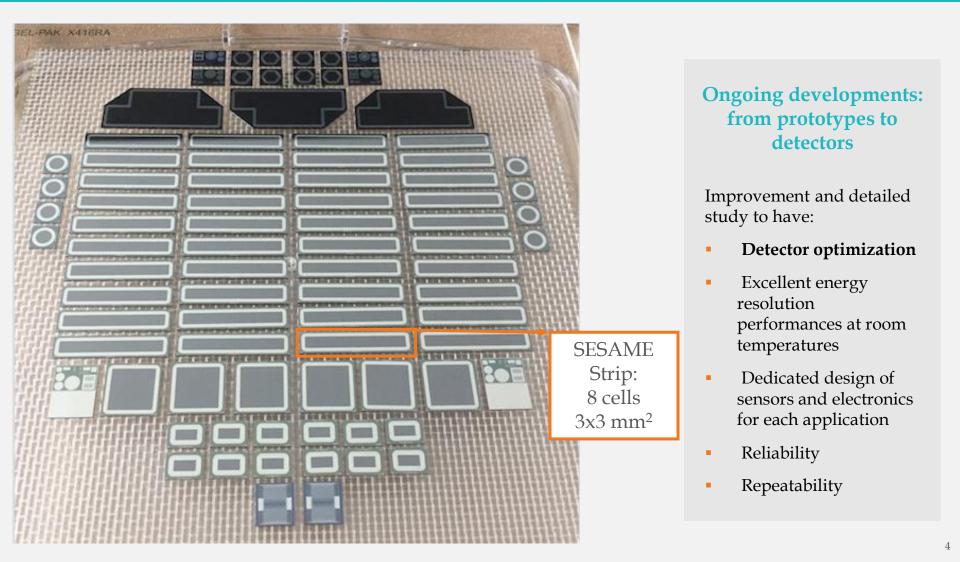
(1) INFN Trieste, Padriciano, 99, 34149 Trieste (TS), Italy

(2) Department of Mathematics, Computer Science, and Physics, University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy

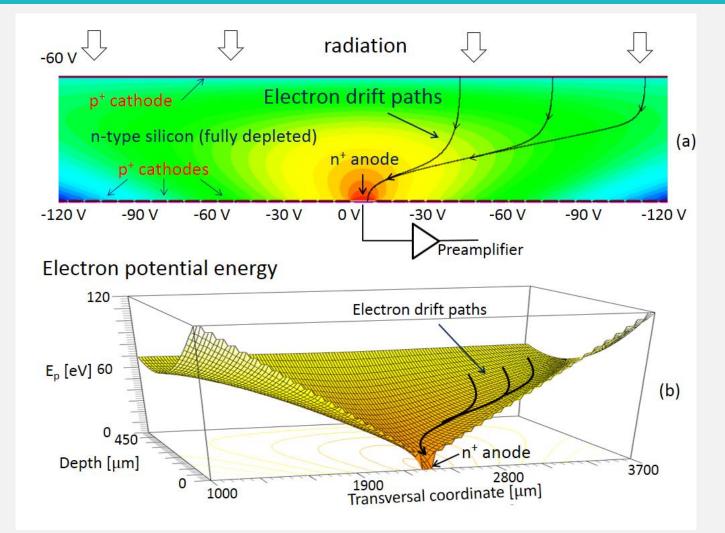
- (3) Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163,500 in Area Science Park, 34149 Basovizza (TS), Italy
- (4) Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo (TN), Italy
- (5) TIFPA INFN, Via Sommarive, 14, 38123 Povo (TN), Italy
- (6) Politecnico di Milano, Via Anzani, 42, 22100 Como (CO), Italy
- (7) INFN Milano, Via Celoria 16, 20133 Milano (MI), Italy

ReDSoX (REsearch Drift for SOft X-rays) Collaboration

- Development of high energy resolution SDD for soft Xrays
- Evolution of SDD technology in collaboration with FBK CMM Trento
- Evolution of FE electronics in collaboration with PoliMI
- Development of large surface SDD for X-ray astrophysics
- Development of detection systems for Advanced Light Sources
 - External institutions involved: FBK-CMM (Trento), Elettra - Sincrotrone Trieste, IASF-BO, INAF-IAPS-ROMA, PoliMI, ICTP Trieste
 - INFN groups: Trieste, TIFPA, Bologna, ROMA2, Milano, Pavia
 - Principal Investigator: Andrea Vacchi

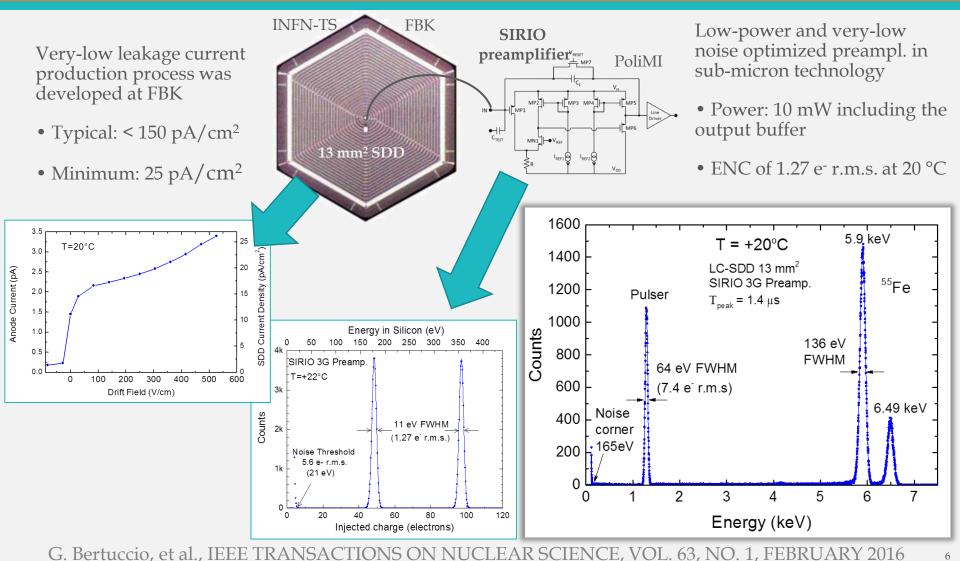

Scientific and technological applications of SDD

- X-ray Astrophysics
- Gamma-ray
 Astrophysics


•

- Advanced Light Sources
- Biophysics
- Medicine
- Nanotechnology
- Materials science
- Industry
- Cultural heritage

SESAME Wafer - SDD


Section of SDD sensor and potential energy of the electrons

G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016

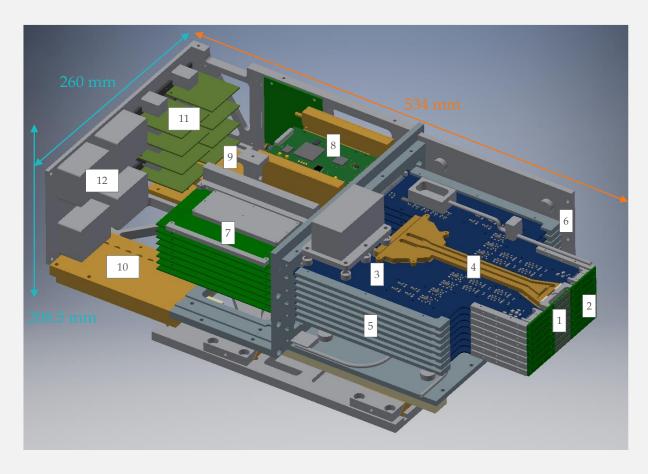
5

SIRIO: Ultra Low Noise CMOS Charge Sensitive Preamplifier

64-channel XAFS-SESAME Detection System for XRF-XAFS Beamline of SESAME

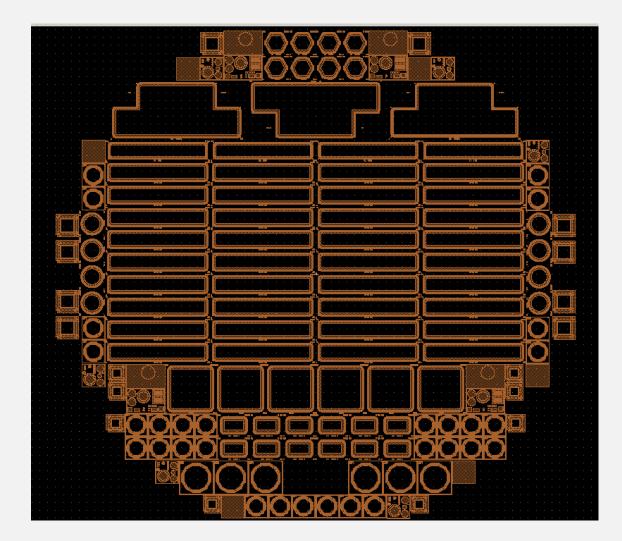
XAFS-SESAME Detection System

SESAME: Synchrotron-Light for Experimental Science and Applications in the Middle East (Jordan)



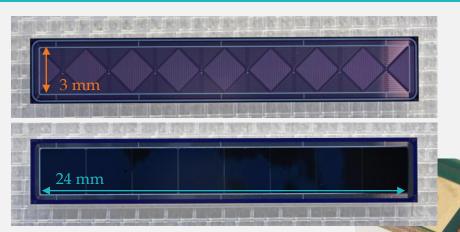
XAFS-SESAME Detection System

Description



XAFS-SESAME 64-channels SDD Detection System

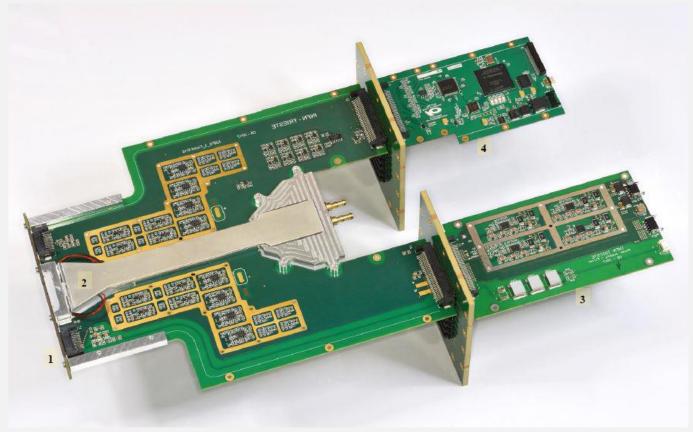
- 1. Sensors
- 2. Detector PCBs
- 3. Front-End PCBs
- 4. Brass profile with cooling liquid flowing inside
- 5. Insertion guides at flanks of detecting heads
- 6. Rails for eight detection heads
- 7. Power supply and filters PCBs
- 8. Back-End PCBs
- 9. Cooling distribution inlet
- 10. Cooling distribution outlet
- 11. Ethernet PCBs
- 12. Power supply connectors

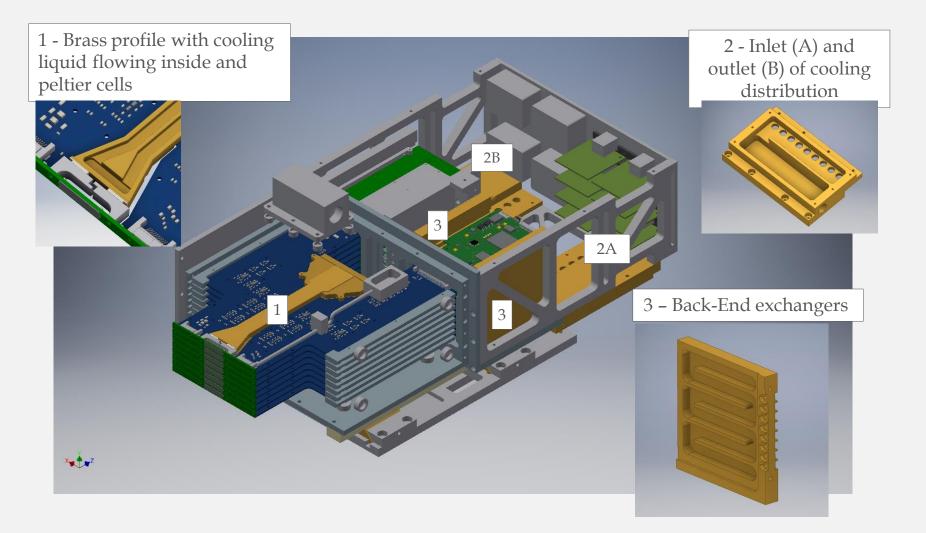

SESAME SDDs - 8 cells 3x3 mm²

SDDs testing and selection

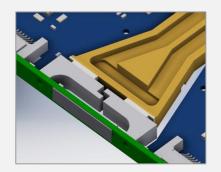
- Electrical characterization of sensors. Definition of the Bias voltage for the whole system.
- Selection of sensors with uniformity Bias characteristics.
- Sensor test with 18 needles Probe Card. Selection of the sensors with anode current less then 10 pA at 20 °C (111pA/cm²).

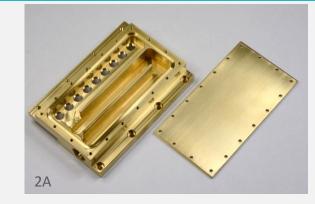
Strip: 8 channels SDD


- Sensors: SDD (linear array comprising 8 square cells with a 3 x 3 mm² active area)
- Preamplifier: SIRIO (SFS3)
- Detector PCB

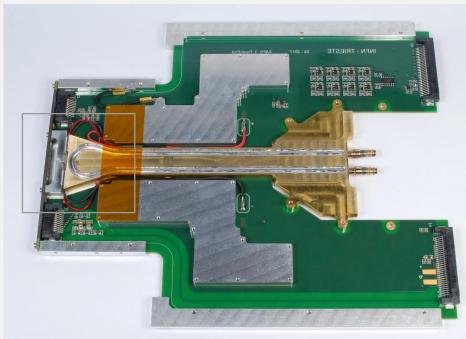

i.

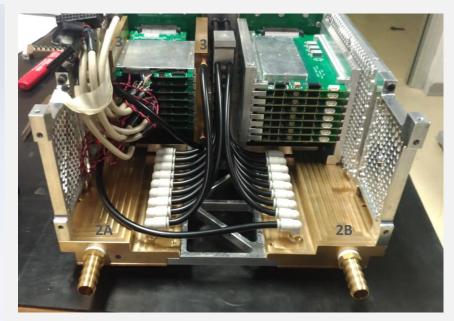
Plane

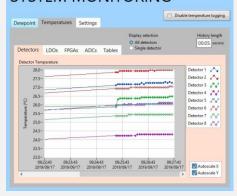

- 1. Strip (SDD+SIRIO+PCB detector)
- 2. Front-End PCB
- 3. Back-End PCB
- 4. Power supply and filters PCB
- 5. Interface connectors



Temperature stabilization system




Temperature stabilization system



Dedicated Acquisition System: Fluorescence Instrumentation Control Universal Software (FICUS)

DIAGNOSTIC INFORMATION

6.03 6.03

6.05 6.02 6.01 6.01 6.00 6.00 6.00 6.00 5.98

6.03

6.03

6.01 6.01 6.01 6.02 6.01 5.99 5.99 5.99

6.03 6.03 6.02 6.00

6.03

6.03 6.02 6.02

6.04

6.01 6.01 6.00 6.00

6.00

5.99 5.98 5.99

6.00

6.00

6.01 6.00 5.99

6.00 5.99

15.1ms 15.1ms 15.0ms 15.1ms 15.0ms 15.0ms 15.0ms 15.0ms

15.1ms 15.1ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms

15.0ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms

15.1ms 15.1ms 15.1ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms

15.1ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms 15.0ms

15.1ms 15.1ms 15.0ms 15.0ms 15.0ms 15.0ms

15.0ms 15.0ms 15.0ms 15.0ms

15.1ms 15.1ms 15.0ms 15.0ms 15.0ms

6.00

6.00 5.99

5.99

5.99

14.8kH

14.8kHz

14.8kH

14.8kHz

14.8kHz

14.SkHa

Diagnostic info

Show 1 Show Show Cell Plot Counts All Plots

DEADTIMES per cell

Histogram

CELL STATUS COUNTS DEADTIMES PILEUPS

Clear all

SAVE DATA

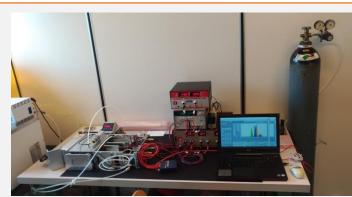
~ BEAMLINE STAFF ~

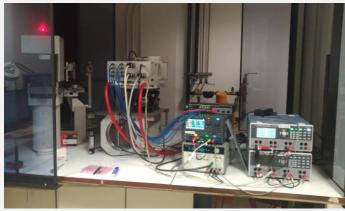
System Monitor Diagnosti Info

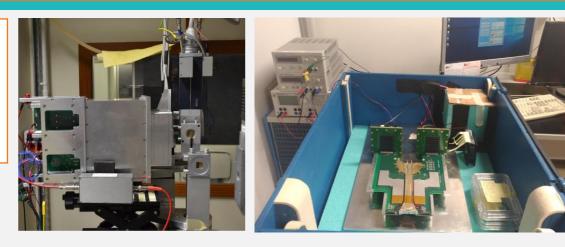
In BOUS - Detector GUI - BEAM INE STATE

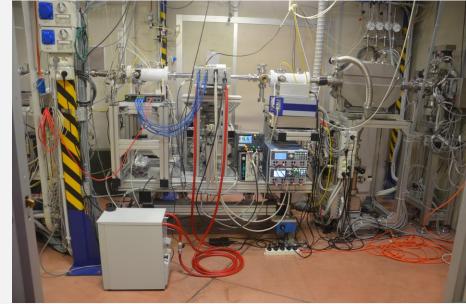
TCP Mode Opti

Auto Save Data SISON MASCH

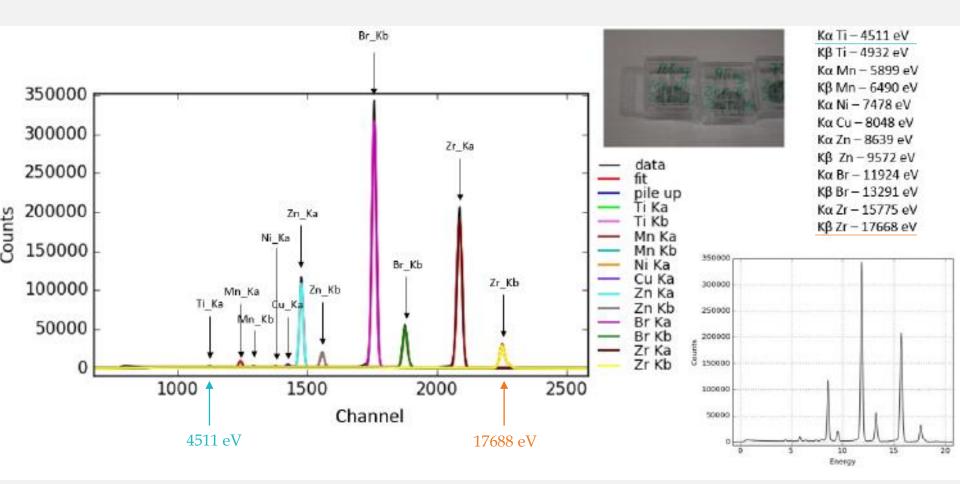

XAFS-SESAME Detection System


Characterization and results



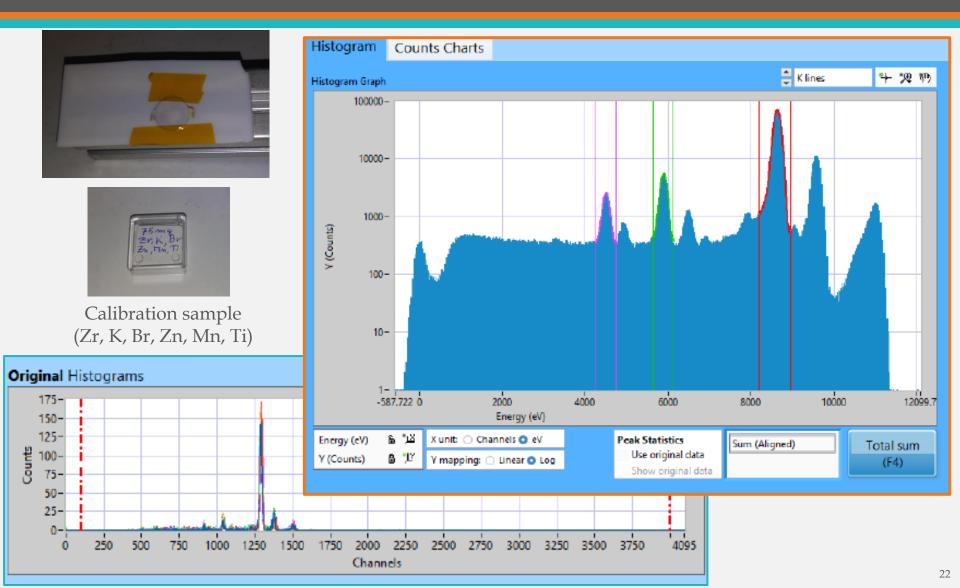

Tests with X-ray sources

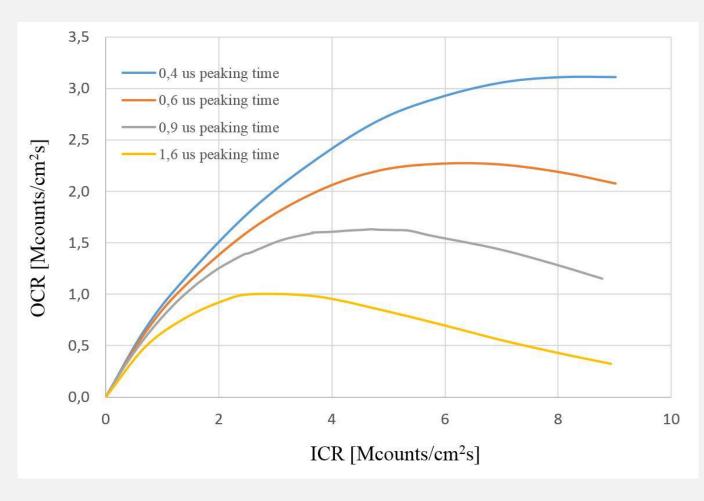
- ⁵⁵Fe
- Ag anode X-ray tube
- Cu rotating anode X-ray tube
- Synchrotron light



Calibration sample (Zr, K, Br, Zn, Mn, Ti)

Complete XAFS-SESAME Detection System


- 8 strips
- 64 channels
- 576 mm² active area


🇱 All plots display								×
<u></u>	<u> </u>		l	mul	Lunt	<u></u>	<u> </u>	X scale options Custom scale X Minimum X Maximum 600 900
Land	mrul		_ml	mart	l	h		Y scale options
	l	l	m	mil	<u> </u>	_nr.l	<u> </u>	Y Minimum 0 100
Lunt	ml	ml	mul	ml	<u></u>	<u></u>	mul	Display options
Lund	unl	<u>l</u>	mul	m	m	l	m	Updated
Link	ml	mul	m	<u></u>	<u> </u>	m	mn	
Lund	ml	m	m	Land	Lul	<u>l</u>	<u> </u>	
Linut	mul	mul	l	mint	L	l	Lun	ALL CELLS PLOTS

IP Address	Port	Status	Unique Part Identifier
192.168.1.1	10001	V ENABLED	SDD_STRIP_012
192.168.2.2	10002	V ENABLED	SDD_STRIP_020
192.168.3.3	10003	V ENABLED	SDD_STRIP_016
192.168.4.4	10004	V ENABLED	SDD_STRIP_014
192.168.5.5	10005	V ENABLED	SDD_STRIP_015
192.168.6.6	10006	V ENABLED	SDD_STRIP_021
192.168.7.7	10007	V ENABLED	SDD_STRIP_022
192.168.8.8	10008	ENABLED	SDD_STRIP_018

Sum of 64 channels – Calibration sample

Output count-rate (OCR)



Output count-rate (OCR) versus input count-rate (ICR), obtained with different peaking times ranging from 0.4 to 1.6 µs. Test with 13 active cells to confirm the ability of the new system to work at high input countrates (ICR) while maintaining low dead time and good energy resolution. This translates into an output count-rate (OCR) of 15.5 Mcount/s for the entire 64 elements detector.

J. Bufon, et al., AIP Conference Proceedings. AIP Publishing LLC, 2019, p. 060061

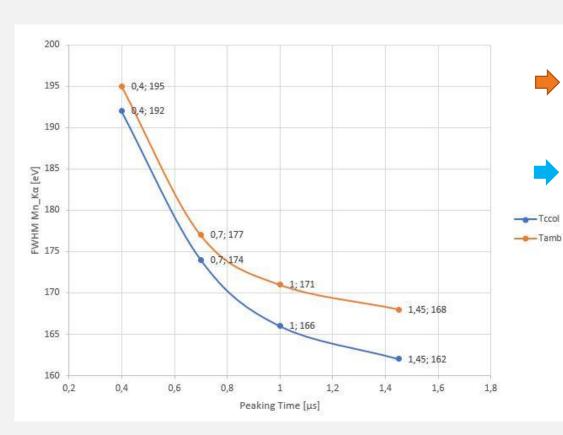
System at different temperatures

ast value	Detector	LDO	FPGA	ADC
Detector 1	27.81 °C	43.56 ℃	35.81 °C	32.06 °C
Detector 2	28.50 °C	43.12 °C	35.87 °C	33.06 °C
Detector 3	27.12 °C	40.50 °C	35.94 °C	32.75 °C
Detector 4	24.75 ℃	44.81 °C	36.25 °C	32.87 °C
Detector 5	26.75 °C	42.81 °C	34.75 °C	32.50 °C
Detector 6	27.50 °C	43.25 °C	35.19 °C	31.69 °C
Detector 7	25.87 °C	42.25 °C	35.94 °C	32.06 °C
Detector 8	26.75 °C	42.94 °C	35.25 °C	33.25 °C

Detector 5 🔧 Detector 6 Detector 7 Detector 8 🔧

Tcool

- Chiller (18 °C) •
- Nitrogen fluxing ۰
- Peltier cells •

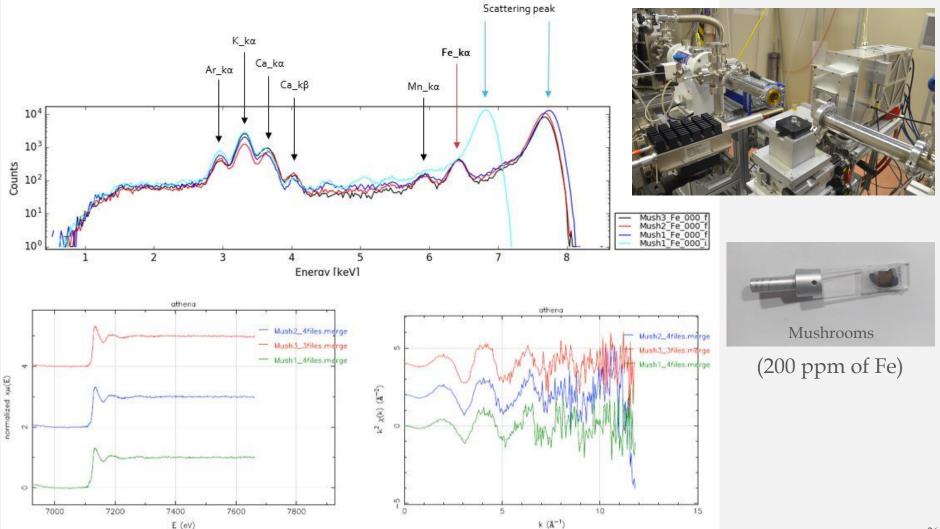

Tamb

- Chiller (18 °C) .
- Nitrogen fluxing

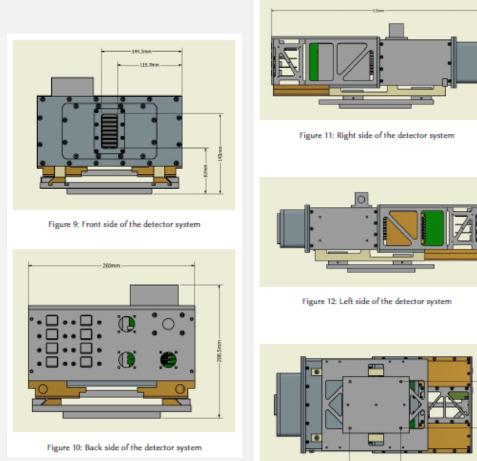
With relative settings: filters, baselines, and thresholds for every channel

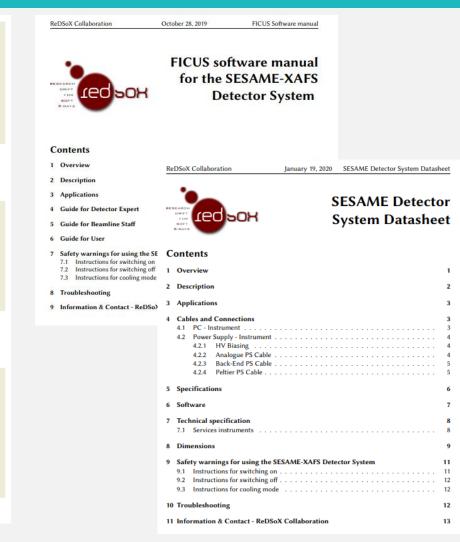
last value	Detector	LDO	FPGA	ADC
Detector 1	7.75 ℃	48.00 °C	38.25 °C	33.56 °C
Detector 2	8.37 °C	47.44 °C	38.31 °C	34.69 °C
Detector 3	5.31 °C	44.12 °C	38.12 °C	34.37 °C
Detector 4	3.37 °C	49.00 °C	38.50 °C	34.44 °C
Detector 5	4.94 °C	46.69 °C	36.87 °C	33.81 °C
Detector 6	4.50 °C	47.06 °C	37.75 °C	33.44 °C
Detector 7	5.69 °C	46.25 °C	38.50 °C	33.56 °C
Detector 8	6.56 °C	47.12 °C	37.87 °C	34.75 °C

Acquisitions with the complete detection system at different peaking time and temperature



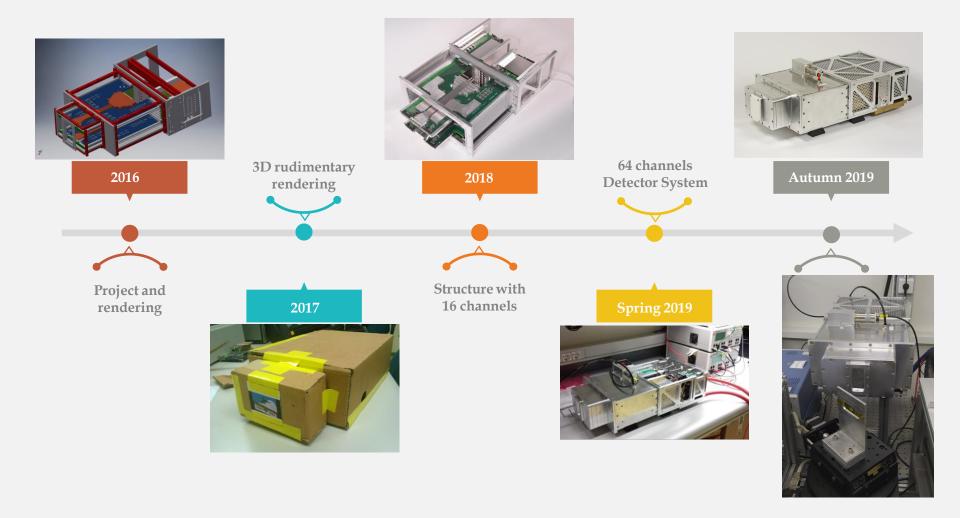
Temperature	FWHM Mn ka [eV]	Peaking time [µs]	(P/B) RATIO
Tamb	195	0,4	26,5
Tamb	177	0,7	28,5
Tamb	171	1,0	28,0
Tamb	168	1,45	26,6
Tcool	192	0,4	28,7
Tcool	174	0,7	30,1
Tcool	166	1,0	30,9
Tcool	162	1,45	29,2


Last value	Detector	LDO	FPGA	ADC
Detector 1	27.81 °C	43.56 °C	35.81 °C	32.06 °C
Detector 2	28.50 °C	43.12 °C	35.87 °C	33.06 °C
Detector 3	27.12 °C	40.50 °C	35.94 °C	32.75 °C
Detector 4	24.75 °C	44.81 °C	36.25 °C	32.87 °C
Detector 5	26.75 °C	42.81 °C	34.75 °C	32.50 °C
Detector 6	27.50 °C	43.25 °C	35.19 °C	31.69 °C
Detector 7	25.87 °C	42.25 °C	35.94 °C	32.06 °C
Detector 8	26.75 °C	42.94 °C	35.25 ℃	33.25 °C

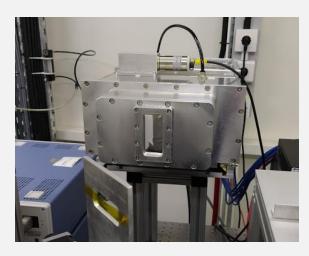

Mode select				
Last value	Detector	LDO	FPGA	ADC
Detector 1	7.75 ℃	48.00 °C	38.25 °C	33.56 °C
Detector 2	8.37 °C	47.44 °C	38.31 °C	34.69 °C
Detector 3	5.31 ℃	44.12 °C	38.12 °C	34.37 °C
Detector 4	3.37 °C	49.00 °C	38.50 °C	34.44 °C
Detector 5	4.94 °C	46.69 °C	36.87 °C	33.81 °C
Detector 6	4.50 °C	47.06 °C	37.75 ℃	33.44 °C
Detector 7	5.69 °C	46.25 °C	38.50 °C	33.56 °C
Detector 8	6.56 °C	47.12 °C	37.87 °C	34.75 ℃

Preliminary and Qualitative Analysis of mushrooms – Elettra (BT March 2019)

Complete XAFS-SESAME Detector System: Manuals and Datasheet

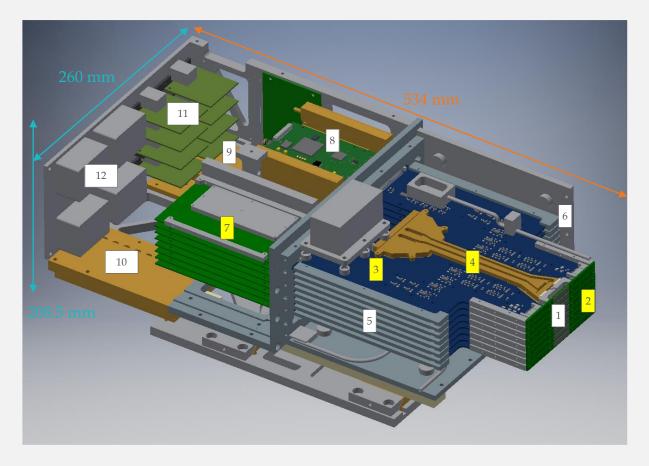


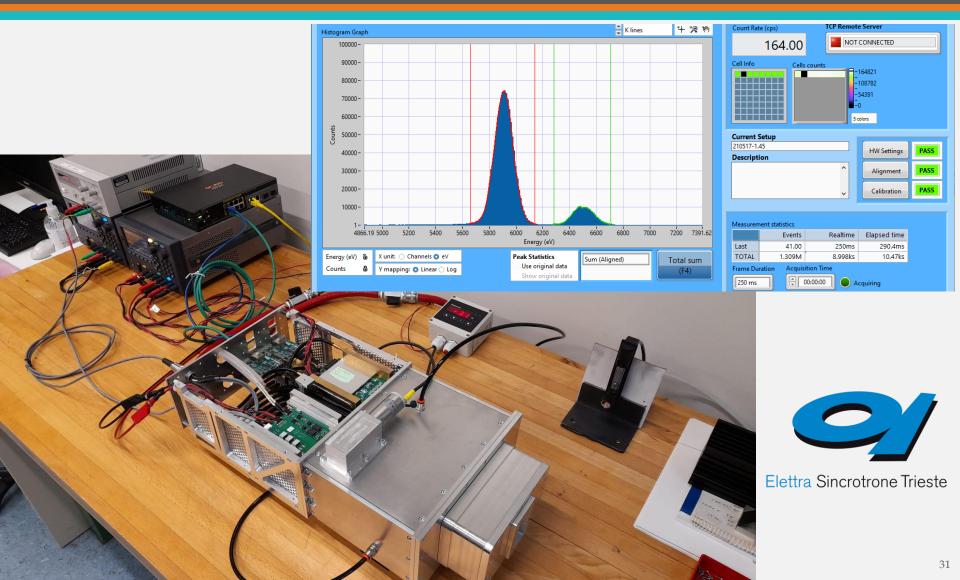
D. Cirrincione - PhD Thesis (XXXII Cycle) - UNIUD - New versatile monolithic multipixel detector systems based on Silicon Drift Detectors 27


Figure 13: Down side of the detector system

Evolution of the Detector System

XAFS – SESAME Detection System installed at SESAME




Future (almost present): new challenges

Renewed:

- 1. Sensors
- 2. Detector PCBs
- 3. Front-End PCBs
- 4. Brass profile with cooling liquid flowing inside
- 5. Insertion guides at flanks of detecting heads
- 6. Rails for eight detection heads
- 7. Power supply and filters PCBs
- 8. Back-End PCBs (FIR)
- 9. Cooling distribution inlet
- 10. Cooling distribution outlet
- 11. Ethernet PCBs
- 12. Power supply connectors

Future (almost present): new challenges and results

Conclusions

- SDDs have demonstrated very **good performances** and represent a very important **scientific and technological instrument**
- Versatile dedicated design of detection system
 - Very good energy resolution
 - Room temperature operability
 - Large area, in multipixel array
 - Low dead time
 - High count rate
- Numerous **important applications** of the detection system:
 - Agricultural and food chain (pollutants and contaminants)
 - Biophysics
 - Materials science and industry
 - Cultural heritage

Unique

Detection System

HPXM2021 – High Precision X-ray Measurements, 8-10 June 2021 – INFN-LNF, Online

D. Cirrincione

New multichannel modular detection system based on Silicon Drift Detectors

Thanks for your attention!