

Dynamical and correlated disorder at nanoscale in complex materials

Gaetano Campi Institute of Crystallography - CNR

Frascati, 8/06/2021

Complex and inhomogeneous materials

Complex materials are characterized by variations in the atomic and electronic structure on different length scales.

CDW, SDW, orbitals electronic clumpy patterns

Myelin Fluctuations at nanoscale

Cements Packing at nanoscale

Perovskites

Bone tissue Mixture at nanoscale

Steel GB at micron scale

Inhomogeneity at atomic scale: X-ray diffuse scattering

.....from point to topological defects: heterogeneous matter

Disorder and complexity in matter

Several materials have inhomogeneous phases. This occurs when several physical interactions such as spin, charge, strain, orbital are simultaneously active. The spontaneous emergence of spatial patterns and correlated disorder is due to many competing states, as in soft materials and biological systems.

Different spatial patterns produce an energy landscape where transitions between different conformations involve similar energy values down to few meV.

METHODS

(i) high intensity and brilliance (20 orders of magnitude higher);
(ii) broad and continuous spectral range from the infrared to the X-ray;
(iii) narrow angular divergence;
(iv) high degree of polarization;
(v) pulsed time structure.

Active optics

High Precision X ray Measurements 1. Crystal orientation and peaks indexing

Correlated disorder in atomic structure

4 circle K-diffractometer

High Precision X ray Measurements 2. Scanning micro/nano XRD

Scanning X-Ray Diffraction

FOCUSING OPTICS

Methods 3. Big datasets analysis: Statistical Physics

X ray microdiffraction analysis

Mapping (domain size, population of coexisting soft-like phases)

Correlations in space and time

Continuous/Discrete patterns

Clustering Aggregation/dispersion Spatial tessellation

> Connectivity Percolation

APPLICATIONS

DEFECTS and CDW SELF-ORGANIZATION in La2CuO4+y

Vol 466 12 August 2010 doi:10.1038/nature09260

nature

LETTERS

Scale-free structural organization of oxygen interstitials in La₂CuO_{4+y}

Michela Fratini¹⁺, Nicola Poccia¹, Alessandro Ricci¹, Gaetano Campi^{1,2}, Manfred Burghammer³, Gabriel Aeppli⁴ & Antonio Bianconi¹

nature materials

PUBLISHED ONLINE: 21 AUGUST 2011 | DOI: 10.1038/NMAT3088

Evolution and control of oxygen order in a cuprate superconductor

Nicola Poccia¹, Michela Fratini¹, Alessandro Ricci¹, Gaetano Campi², Luisa Barba³, Alessandra Vittorini-Orgeas¹, Ginestra Bianconi⁴, Gabriel Aeppli⁵ and Antonio Bianconi¹*

Temperature (K)

Scale free order

Two different sample preparation with the same oxygen content but different Tc and configurations due to oxygen distribution.

Non-euclidean electronic space

LETTER

doi:10.1038/nature14987

Inhomogeneity of charge-density-wave order and quenched disorder in a high- T_c superconductor

G. Campi^{1,2}, A. Bianconi^{1,2}, N. Poccia^{2,3}, G. Bianconi⁴, L. Barba⁵, G. Arrighetti⁵, D. Innocenti^{2,6}, J. Karpinski^{6,7}, N. D. Zhigadlo⁷, S. M. Kazakov^{7,8}, M. Burghammer^{9,10}, M. v. Zimmermann¹¹, M. Sprung¹¹ & A. Ricci^{2,11}

J Supercond Nov Magn DOI 10.1007/s10948-015-3326-9

ORIGINAL PAPER

High-Temperature Superconductivity in a Hyperbolic Geometry of Complex Matter from Nanoscale to Mesoscopic Scale () CrossMark

G. Campi^{1,2} · A. Bianconi^{1,2,3}

The CDW crystalline puddles form inhomogeneous spatial patterns giving rise to a new non-Euclidean geometry in the **interstitial space** left by the crystals of electrons. The free electrons, which do not crystallize, form Cooper pairs flowing along paths in the interstitial space at low temperatures.

Order and correlated disorder in biology

Structural Fluctuations at nano/mesoscale

Myelin X ray Diffraction and E-D profiles

SCIENTIFIC

OPEN

Received

SUBJECT AREAS: MEMBRANE BIOPHYSICS SELF-ASSEMBLY

Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin

Nicola Paccia^{1,2*}, Gaetano Campi^{2*}, Alessandro Ricci^{1,4}, Alessandra S. Caporale¹, Emanuela Di Cola⁵, Thomas A. Hawkins⁶ & Antonio Bianconi^{1,3}

Myelin structural unit with the four principal myelin protein. The PMP22 protein is located in the lpg membrane. The PO protein helps to build the myelin layers stacking. The cytoplasmic layer, cyt, (yellow), is the location of the structured protein P2 and the intrinsically disordered protein MBP.

Myelin XRD

2-D diffraction pattern of myelin shows the expected arcrings corresponding to the Bragg diffraction orders h = 2, 3, 4, 5. The exposure time was 300ms

Myelin ED

From the differences between two adjacent maxima $d_{cyt} d_{ex} d_{lpg}$ and $d_{\lambda}=2d_{lpg}+d_{ext}+d_{cyt}$ were obtained.

Myelin Spatial statistics of fluctuations

Levi correlated disorder in functional state

Correlated disorder and IDP

Myelin basic protein dynamics from out-of-equilibrium functional state to degraded state in myelin

Check for updates

Michael Di Gioacchino^{a,b,c,*}, Antonio Bianconi^{b,c,d}, Manfred Burghammer^e, Gabriele Ciasca^f, Fabio Bruni^a, Gaetano Campi^b

SAXS profiles measured at room temperature of the MBP in aqueous solution alongside the curve fit (green line) obtained by Ensemble Optimization Method (EOM) A 3D representation of some possible conformations of MBP extracted by EOM, used to fit the SAXS data. Large combinations of network interactions allow to <u>organize the</u> <u>disorder</u> A 3D representation of P2 folded structure

Conclusions

Functional disorder control for Multiscale Material Engineering

above 10 microns are a classical issue of Material Engineering to optimize material properties.

from 10 microns to 0.1 nm structural fluctuations represent a **new field** of fundamental science for developing innovative material functionality.

Alessandro Ricci Nicola Poccia

Michela Fratini Gabriele Ciasca

Luisa Barba Manfred Burghammer

LorenzaSuber

Naurang Saini Antonio Bianconi

