Construction and test of the Gas Pixel Detectors for the IXPE Mission

HPXM 2021 - Frascati

Alberto Manfreda alberto.manfreda@pi.infn.it

INFN-Pisa

9 giugno 2021

- Polarimetry provides rich information on the physics of targets that cannot be obtained in any other way:
 - ▷ Internal geometry of sources of radiation
 - ▷ Strengths and orientations of magnetic fields
 - Distribution and orientation of scattering particles
 - ▷ Fundamental physics effects (GR, QED)
- \triangleright Due to its technical challenges, soft X-ray polarimetry has been silent for \sim 40 years \ldots

THE ASTROPHYSICAL JOURNAL, 220:L117-L121, 1978 March 15 © 1978. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A PRECISION MEASUREMENT OF THE X-RAY POLARIZATION OF THE CRAB NEBULA WITHOUT PULSAR CONTAMINATION

M. C. WEISSKOPP, E. H. SILVER, H. L. KESTENBAUM, K. S. LONG, AND R. NOVICK Columbia desception of the control of the contro

ABSTRACT

The linear X-ray polarization of the Crab Nebula has been precisely measured at 2.6 keV and 52 keV with the 08/08 graphite crystal polarizations intime resolution of these instruments permitted the removal of any contribution to the polarization from the pulsar. The nebular polarization is $9.2\% \pm 1.0\%$ at a position angle of 156° 4 \pm 1?4 at 2.6 keV. At 5.2 keV the corresponding results are $19.3\% \pm 2.8\%$ at 152° 6 \pm 4.00.

Subject headings: nebulae: Crab Nebula - polarization

 \triangleright ... until the latest generation of detectors came to the rescue!

The Gas Pixel Detector concept

- Photoelectric effect dominant for soft (< 10 keV) X-rays
- K-shell photo-electron emission 100% modulated for linearly ploarized radiation:

$$\frac{d\sigma_{\rm C}^{\rm K}}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta\cos^2\phi}{(1+\beta\cos\theta)^4}$$

▷ Typical track length ~ µm in solid: a gaseous medium is needed!

- ▷ X-ray absorption in a gas gap
- ▷ Signal amplification via a Gas Electron Multiplier (GEM)
- ▷ Finely pixelized ASIC as readout anode
- $ho\,$ Sensitive in the $\sim 2-8$ keV band
- ▷ Full two-dimensional imaging and spectroscopy

The Imaging X-Ray Polarimetry Explorer mission

- Selected in 2017 by NASA as its next SMEX (SMall EXplorer) mission, to be launched in November 2021
- ▷ Funded by a NASA-ASI partnership, completely dedicated to X-ray polarimetry
- ▷ For the first time simultaneously perform imaging, spectrometry, polarimetry and timing of tens of x-ray sources
- ▷ 2 years of on-orbit operations + 1 years extension

IXPE science targets

The spacecraft

- ▷ 300 kg total mass, 200 W power budget
- > Deployable boom, 4 m focal nominal length
- ▷ Will be launched by a Space-X Falcon 9
- ▷ Hosts 3 identical telescopes, each comprised of:
 - > A Mirror Module Assembly (MMA) for light collection
 - > A Detector Unit (DU) equipped with a polarization-sensitive detector
- \triangleright DUs are rotated by 120° respect to each other (reduce systematic effets)

The Detector Unit (DU)

Exploded view

- The DU is the basic unit of the IXPE instrument
 - Designed, assembled and tested at INFN
- Back-end electronics mounted below the GPD on a dedicated housing
- GPD thermal control via TEC (Peltier), heater and thermal strap
- Filter and Calibration Wheel on top of the detector for in–flight calibration and performance monitoring
 - One polarized (2 energies) and 3 unpolarized sources
- Stray light collimator to block diffuse light
 - arphi Carbon fiber and Mo (and Au) coating

GPD exploded view

- ▷ Sealed detector, no gas system needed
- \triangleright X-ray window in Be, 50 μ m thick
- ⊳ Gas cell thickness 1 cm
- ⊳ Gas mixture: DME @ 0.8 bar
 - ▷ Optimized for 2-8 keV energy range

The GEM

- ▷ Produced by RIKEN and SciEnergy in Japan
- ▷ 50 µm thick Liquid Crystal Polymer (LCP) insulator, 5 µm copper layer
- $\,\triangleright\,$ Hexagonal hole pattern, with 50 μm pitch, diameter of 30 μm
- ▷ Pushing the technology to its limits
- Production process refined iteratively with input from our test

The readout ASIC

Bellazzini et al., NIM A 535, 477-484 (2004)

Technology	CMOS 0.18 µm
Active area	\sim 15 $ imes$ 15 mm
Fill factor	92 %
Number of pixels	300×352
Pixel pitch	50 µm
Pixel density	\sim 470/mm 2
Pixel noise	\sim 20 ENC
Shaping time amplifiers	3 - 10 μs
Readout clock	typically 5 MHz

- \triangleright Self-triggering, with ROI definition
- $\,\triangleright\,$ Metal top layer acting as a charge collecting anode
- ▷ Integrating preamplifier, shaper, S/H, multiplexer
- ▷ Serial readout via external 14 bits ADC

Event reconstruction

A typical 5.9 keV track (Fe55)

- ▷ Clustering stage to identify main track
- > Moments analysis to get the ellipsoide of inertia of the charge distribution
- ▷ Exploit the Bragg peak to identify conversion point
- A second, weighted moments analysis, to improve direction estimate (especially helpful for high-energy events)

DU construction: GPD assembly @INFN Pisa

- \triangleright Hard challenge, due to strict time schedule:
 - $\rhd\,$ Less than 3 years from mission approval to delivery of the last DU
 - I7 GPDs assembled, 9 of flight quality, 3 of which (+1 spare) selected for the mission.
- \triangleright Requirement on leak rate: < 1 \cdot 10⁻⁹ mbar I/s
 - ▷ Careful design of the entire process
 - Patiently tuned by trial-and-error
- ▷ Several gluing steps (~ 1 day each), with CMM alignment verification

GPD filling and testing

- ▷ Final leak test with He at INFN-Pisa
- Bake-out and filling at Oxford Instrument (OIT) in Finland
 - $\,\triangleright\,$ A 2 weeks bake-out at 100 $^\circ {
 m C}$
 - ▷ Filling with DME at 0.8 bar is done in the same facility
 - ▷ Finally GPD is permanently sealed by crimping the filling tube
- Back to Pisa for electrical and functional tests with Fe55 source

DU integration

- ▷ DU Intergation performed in-house
- ▷ Installation of thermal items and cabling
- Integration of BEE boards, FCW, UV filter and collimator

DU FM tests

- Full functional tests and metrology @INFN-Pisa
- Vibration test @BPS (FM1) and SERMS
 Followed by a functional test
- TVAC tests and calibration with X-ray beams @IAPS, Rome

Performance of the GPD

- ▷ Quantum efficiency: 20% (3%) at 2.7 keV (5.9 keV)
- \triangleright Energy resolution: \sim 17% at 5.9 keV.
 - ▷ Better than our mission requisite (25%)
 - > Enough to perform energy-resolved polarimetry in a few bins
 - > Left tail: photons converting in GEM or Be window
- \triangleright Spatial resolution: \sim 90 μ m at 5.9 keV
 - > Subdominant compared to the blurring introduced by the optics
- \triangleright Temporal resolution: \sim a few μ s.
 - ▷ Allows phase-resolved polarimetry for pulsars

Performance of the GPD

Modulation factor: 0.3 (0.55) at 2.7 (6.4) keV.

▷ Fully meet scientific requirements

- Flat response to unpolarized radiation at 5.9 keV
- ▷ What about lower energies?

The spurious modulation puzzle

An unexpected behaviour

- ▷ Spurious modulation signal detected during tests with low-energy pencil X-ray beams
- $\rhd~$ Orientated vertically ($\sim90^{\circ}$), quickly decreasing with energy: up to $\sim10\%$ at 2.7 keV, essentially absent at 5.9 keV
- Large variations on relatively small (sub-mm) spatial scale: calibration is time consuming

- ▷ A mix of different causes:
 - > Coherent noise effects in the ASIC (small and easily removed by off-line analysis)
 - Spatial variation due to GEM
- Solution: observatory dithering along the line of sight + calibration of the residual effect

Status and Conclusions

- \triangleright IXPE will open a new observative window on the Universe
- ▷ Expected to observe for the first time X-ray polarization in the soft X-ray band (2-8 keV) for many tens of sources, with unprecedented sensitivity
- ▷ Production and delivery of flight DUs completed
- ▷ Satellite integration at Ball Aerospace (Colorado) completed
- > CurrenIty undergoing final vibration and TVAC tests at spacecraft level
- ▷ Launch scheduled in November 2021... science coming soon!

BACKUP SLIDES

Basic polarimetry formalism

 \triangleright A polarimeter essentially measures the azimuthal modulation around the polarization direction ϕ_0 of the incident photon beam:

$$R(\phi) = A + B\cos^2(\phi - \phi_0)$$

▷ Modulation factor: Response to 100% polarized radiation

$$\mu = \frac{R_{\max} - R_{\min}}{R_{\max} + R_{\min}} = \frac{B}{B + 2A}$$

▷ Minimum Detectable Polarization (MDP):

$$MDP_{99\%} = \frac{4.29}{\mu\sqrt{N}}$$

The IXPE mission

Overview

- ▷ 2 years of on-orbit operations + 1 years extension
- \triangleright Point-and-stare observation mode towards predefined targets
 - ▷ Long duration from days to week(s)
 - > Data are made public after validation
 - $\,\vartriangleright\,$ No-repointing, but Targets of Opportunity possible in a few days
- ▷ Equatorial orbit (0.1° inclination), 600 Km nominal altitude
 - > Minimize charged particle background
 - $arphi~\sim$ 13% off-time due to South Atlantic Anomaly

Mirror modules

Property	Value
Number of MMAs	3
Mirror shells per MMA	24
Focal length	4000 mm
Shell length (P+S combined)	600 mm
Inner-outer shell diameter	162–272 mm
Inner-outer shell thickness	0.18–0.26 mm
Shell material	Nickel–Cobalt alloy
Mass per MMA	30 kg (current best estimate)
Effective area per MMA	210 cm ² (2.3 keV) > 230 cm ² (3–6 keV)
Angular resolution	≤ 25 arcsec HPD
Field of view (detector-limited)	12.9 arcmin

Mirror modules assembly

Mandrel fabrication

1. Machine mandrel from aluminum bar 2. Coat mandrel with electroless nickel (Ni–P) 3. Diamond turn mandrel to sub-micron figure accuracy

to 4. Polish mandrel to y 0.3-0.4 nm RMS Conduct metrology on the mandrel

Mirror-shell forming

6. Passivate mandrel surface to reduce shell adhesion

7. Electroform Ni–Co shell onto mandrel

8. Separate shell from mandrel in chilled water

Ni-Co electroformed mirror shells

A novel view on cosmic-ray accelerators

Space resolved polarimetry

- Pulsar wind nebulæ: ordered magnetic field, high polarization degree expected
 - ▷ IXPE imaging capabilities will separate the jet and axis components
 - \triangleright Will also separate pulsar from the brighter nebula emission
- Shock front in supernova remnant: candidate for comsic rays acceleration, turbolent magnetic fields
 - ▷ What is the orientation of the magnetic field at the site of acceleration?
 - ▷ How ordered is it (i.e. level of turbulence)?

Black-holes system and general relativity effects

Energy resolved polarimetry

- $\rhd\,$ Thermal emission from the accretion disk can become polarized (up to \sim 12%) by Compton scattering on the Corona
- ▷ Including general relativity effects:
 - ▷ Black-hole proximity causes a rotation of the polarization angle;
 - ▷ Since the disk temperature decreases with the radius, the phase rotation increases with energy.
- \triangleright An independet technique for measuring the black hole spin a

High magnetic field systems and QED effects

Phase-resolved polarimetry

- \triangleright Magnetar are ultra-magnetized neutron stars with B $\sim 10^{13}$ – 10^{15} G.
- In this regime the refraction index of the vacuum depends on the mangnetic field intensity:
 - ▷ Vacuum polarization, predicted by Heisenberg e Euler in 1936;

$$n_{\parallel} - n_{\perp} = \frac{\alpha_{QED}}{30\pi} \left(\frac{B}{B_{QED}}\right)^2 \sin^2\theta$$
$$B_{QED} = \frac{m_e^2 c^3}{he} = 4.4 \times 10^{13} G$$

> Negligible effect on the flux, measurable using polarimetric quantities

GPD production

▷ 17 GPDs: 9 FMs, 4 QM, 4 EM. 3 FMs (+1 spare) selected for the mission

GEM testing

- Thorough electrical and performance testing of each production batch performed in Pisa
- Dedicated set-up, reproducing the detector environement (ASIC + DAQ) with fluxed Ar/CO₂ gas mixture
- Asserting gain unformity, gain stability, etc...

- $\rhd\,$ Typical operating voltages 400 500 V
- \triangleright Effective gain \sim 200 (including collection efficiency)
- Experimental data well in agreement with simple exponential gain model

$$\frac{1}{G}\frac{dG}{dV} = \gamma \quad [V^{-1}]$$

IXPF

Dithering

- > Dithering of the Observatory along the line of sight
 - Decrease the average spurious modulation amplitude (partial cancellation due to phase incoherence)
 - > Make it possible to calibrate the rest of the effect