



Anna Bergamaschi :: Photon Science Detector Group :: Paul Scherrer Institute

# Advances in hybrid detector development for synchrotrons and XFELs at PSI

HPXM 2021 :: 9<sup>th</sup> June 2021



### The Photon Science Detector Group at PSI









### Hybrid detectors

Sensor and readout electronics can be optimized separately

- Direct conversion in semiconductor
- ☺ Fast drifting of charge to the pixel
- ③ Room temperature operation
- ☺ Fast highly parallelized readout
- Interconnection (bump bonding) limits the pixel pitch
- Input capacitance increases the electronic noise





### Dynamic range at diffraction limited light sources





### Dynamic range at XFELs







Single photon counting detectors

• "Noiseless", stable, reliable, user friendly, rad-hard, fluorescence suppression, large area systems, fast frame rate, pump-probe...



15 years ago

Replaced CCDs/Flat panels

Thousands of protein structures solved using PILATUS/EIGER

#### 10 years ago



Now few nanometers resolution can be achieved in 3D

#### Time resolved experiments



50(15)µs (20(70)kHz)

possible with EIGER

**9M EIGER** 

#### Future developments

- Count rate capability up to 20MHz/pixel
- Soft X-rays

   LGADs
   Andrä, Zhang et al.,
   Jour. Synch. Rad. (2019)



• Sub-pixel resolution

Siemens star 60 µm external pitch acquired at 12 keV Vertical resolution given by slit and scanning step



# Charge integrating with dynamic gain switching

- JUNGFRAU @ SwissFEL
  - -85 modules, >40Mpixels installed
  - -Works also at the new beamline for

#### soft X-rays (even without single photon



- At synchrotron
  - -Improves data quality for protein diffraction
    - -higher count rates, no corner effect
  - -Enables pink beam serial crystallography
  - Large area systems require optimized data backend





### Single photon detection with charge integrators





Charge sharing

•The charge diffuses while drifting to the electrodes

•The diffusion length depends on the drift time:

- -Charge mobility
- -Applied bias voltage
- -Absorption depth
  - -Sensor thickness
  - –X-ray energy
- •The charge can be collected
- by several pixels
  - –Partial signal collection
  - -Inter-pixel correlation
  - –Charge sharing region ca.
     15-20 μm for 320 μm thick





20%



100

 $\bigcirc$ 



Spectral analysis

- Exploit the information contained in the analogue readout
- The full charge can be retrieved by clustering
  - Photon counting –like performance
  - Preserves spectral information
    - Suppresses charge sharing
    - Noise is increased depending on the size of the cluster



Combined energy and

12



# Position interpolation

- Division of charge between pixels is strongly position dependent
- Can improve the spatial resolution
   –Pitch ≈ charge sharing distance
  - $-320~\mu m$  thick Si, 120V  $\approx 20~\mu m$
  - –High SNR
    - -Low noise
    - -Hard X-rays
  - -Isolated photons
    - -Fast frame rate
    - -Low flux





- Acquired with MÖNCH 650 μm thick silicon with 300 V bias voltage at the TOMCAT beamline (SLS) @ 10 keV
- + 2  $\mu m$  thick Gold on 200  $\mu m$  silicon sample
  - Fabricated at LMN (PSI) by M. Lebugle
  - Eiger, Mönch and Jungfrau mountains
  - The size of the flag is 25  $\mu m$
  - The width of the Swiss cross is 7  $\mu m$

The spatial resolution is enhanced of ≈ one order of magnitude!



Courtesy S. Chiriotti



# Fourier ptychography

SLS, cSAXS beamline, 8.7 keV

Wakonig et al., Science Advances (2019).



- The reconstruction didn't work with the CCD
  - Single photon resolution is necessary!
- Fourier ptychography quantitatively reproduces results obtained with traditional methods
  - 47nm resolution after reconstruction
  - Robust reconstruction, insensitive to aberrations/misalignements
  - Significantly lower dose than TXMs
- Larger area faster detector desirable for users operation

#### Image on detector



Reconstructed image





Energy resolved imaging with X-ray tubes

A full spectrum with an energy resolution of about 750 eV FWHM is acquired for each pixel





Siemens Star with spokes 60-0.5  $\mu$ m gold on silicon with silicon microspheres W-anode X-ray tube 40 kV 200  $\mu$ A



### Edge subtraction imaging

#### Images can be binned in energy Gold becomes "transparent" to X-rays below the L-edge



Below Au L-edge

Siemens Star with spokes 60-0.5  $\mu m$  gold on silicon with silicon microspheres W-anode X-ray tube 40 kV 200  $\mu A$ 



High resolution energy resolved imaging

Color imaging works also in combination with interpolation. Challenges due to polychromatic beam.



Siemens Star with spokes 60-0.5  $\mu$ m gold on silicon with silicon microspheres W-anode X-ray tube 40 kV 200  $\mu$ A



# High-Z materials for higher energies





- Silicon is too light to achieve good QE above 20 keV
- High-Z materials under test (GaAs, CdTe, CdZnTe)
  - Material quality often challenging in terms of yield, uniformity, stability...
  - Thicker sensors give more charge sharing and interpolation is possible also with 75µm pixels
  - With small pixels and interpolation we can observe strange effects





### Wir schaffen Wissen – heute für morgen

# The Photon Science detector group at PSI...

- delivers outstanding detectors worldwide.
   strives to optimize hybrid detectors in every aspect.
   Next challenges...
- ... soft X-ray detectors.
   ... new single photon counting pixel detector for diffraction limited light sources.
   ... faster frame rates and data backend.



#### My thanks go to

- Bernd Schmitt
- Marie Andrä
- Rebecca Barten
- Martin Brückner
- Sabina Chiriotti
- Roberto Dinapoli
  - Erik Fröjdh
- Dominic Greiffenberg
  - Shqipe Hasanaj
  - Viktoria Hinger
  - Pawel Kozlowski
    - Thomas King
- Carlos Lopez Cuenca
  - Davide Mezza
  - Aldo Mozzanica
- Konstantinos Moustakas
  - Christian Ruder
    - Dhanya Thattil
    - Gemma Tinti
    - Jiaguo Zhang

...and many collaborators at the

beamlines