High precision X-ray measurements 2021

Optical simulation tools in the OASYS suite and their applications to x-ray optics design

Luca Rebuffi

XSD-OPT Group Advanced Photon Source Argonne National Laboratory

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Frascati, June 9th, 2021

Outline

- Introduction to OASYS: basic features
- Basic loops, scanning loops, and thermal load calculations
- Ray-tracing and Wavefront propagation of refractive elements
- Ray-tracing of a real cylindrical mirror as generate by a bending device

Optical simulation tools in the OASYS suite and their applications to x-ray optics design

- Introduction to OASYS: basic features
- Basic loops, scanning loops, and thermal load calculations
- Ray-tracing and Wavefront propagation of refractive elements
- Ray-tracing of a real cylindrical mirror as generate by a bending device

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Introduction to OASYS

Computer simulation of light sources and optical components is a mandatory step in the design and optimization of synchrotron and FEL radiation beamlines

different codes for numerical simulations are available, implementing different physical approaches

✓ OASYS = OrAnge SYnchrotron Suite

- A common platform to build synchrotron-oriented User Interfaces that communicate
- The upper layer of the application presented to the user

https://www.aps.anl.gov/Science/Scientific-Software/OASYS

OASYS (OrAnge SYnchrotron Suite) Multiple tools in the same environment

L. Rebuffi & M. Sanchez del Rio, Proc. SPIE 10388, 103880S (2017)

- X. Shi et al., J. Synchrotron Rad. 21, 669 (2014)
- L. Rebuffi & M. Sanchez del Rio, J. Synchrotron Rad. 23, 1357 (2016)
- M. Sanchez del Rio et al., J. Synchrotron Rad. 23, 665 (2016)

https://www.aps.anl.gov/Science/Scientific-Software/OASYS

SRW multi-electron Simulations

Optical simulation tools in the OASYS suite and their applications to x-ray optics design

- Introduction to OASYS: basic features
- Basic loops, scanning loops, and thermal load calculations
- Ray-tracing and Wavefront propagation of refractive elements
- Ray-tracing of a real cylindrical mirror as generate by a bending device

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Basic Loops

Loops: Optics Misalignment

For bendable/tunable mirrors

The motor resolution needs to keep the focal spot position change by less than 10% of the FWHM spot size.

Loops: Optics Aberration - Mirror Figure Errors

Study of height error profile (ShadowOui + Hybrid, SRW)

M. Sanchez, et al., DABAM - an open-source database of x-ray mirrors metrology. J. Synchrotron Rad. 23, 665 (2016).

Loops: Thermal Load Calculations

2.5

c/0.1%bw]

Flux [Phot/sec 0

0.5

0.0

SHA

10000

HYBRII

OASYS LOOPS

To evaluate heat load: Accurately calculate Power Density in any point of the beamline

 The spatial and angular distributions of the emitted radiation from an Undulator (given K values), as well as the amount of power is strongly dependent on the energy

- The radiation is not only modified by the geometry of the beamline, but also by phenomena like reflection, absorption and diffraction, all strongly dependent on the energy
- The dependence on the energy makes the calculation iterative (cumulative) by nature

L. Rebuffi, X. Shi, R. Reininger & M. Sanchez del Rio, "A ray-tracing algorithm for ab-initio calculation of thermal load in undulator-based synchrotron beamlines", J. Synchrotron Rad. **27** (2020)

15

Undulator Flux

400

200

-200

-400

30000

Energy [eV]

SRW

20000

E = harmonic

-20 200

40000

Shadow/SRW Undulator

-200

-400

-200

200

E <> harmonic

Loops: Thermal Load Calculations

Ray-tracing of the Undulator Radiation: (ShadowOui + SRW)

managed by UChicago Argonne, LLC

*Conceptual idea by H. Padmore (LBNL)

NATIONAL LABORATORY 1946-202

NERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Optical simulation tools in the OASYS suite and their applications to x-ray optics design

- Introduction to OASYS: basic features
- Basic loops, scanning loops, and thermal load calculations
- Ray-tracing and Wavefront propagation of refractive elements
- Ray-tracing of a real cylindrical mirror as generate by a bending device

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

1-BM Beamline

Optics characterization Tools

Thickness Error: analysis of Talbot Images $d_{T,\theta} = \frac{(2n-1)p_{\theta}^2}{2}$

The differential phases, or field gradients, Φ_x and Φ_y (Fig. 3c) are calculated from the phase ϕ of the Fourier transform with the following formulas

$$\Phi_x = \frac{\partial \Phi(x,y)}{\partial x} = -\frac{p_x(\phi_{\text{lens}}^{01} - \phi_{\text{ref}}^{01})}{d_T \lambda}, \quad \Phi_y = \frac{\partial \Phi(x,y)}{\partial y} = -\frac{p_y(\phi_{\text{lens}}^{10} - \phi_{\text{ref}}^{10})}{d_T \lambda},$$

with the superscripts ¹⁰ and ⁰¹ denoting the harmonic peaks "10" and "01" in Fig. 3b, p_y and p_x are the pattern periods in y and x directions, respectively.

The two orthogonal differential phases are then integrated using the Frankot-Chellappa method²⁵ to form the phase profile,

$$\Phi(x,y) = \mathcal{F}^{-1} \left[\frac{\mathcal{F}[\Phi_x + i\Phi_y](f_x, f_y)}{2\pi i (f_x + if_y)} \right],\tag{6}$$

where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier and inverse Fourier transform, and (f_x, f_y) are the reciprocal coordinates of (x, y). Physically Φ is the phase shift of the wavefront introduced by passing through the lens.

(5)

X. Shi et al., "High-speed characterization of refractive lenses with single-grating interferometry", Proc. SPIE 11109, 111090K (2019)

WavePy 2: analysis of Talbot Images

W. Grizolli et al., "Wavepy - python package for x-ray grating interferometry with applications in imaging and wavefront characterization", AIP Conference Proceedings 2054, 060017 (2019)

Thickness Error Profile

OASYS can import WavePy files

X

Integration in SRW: Transfocators

Integration in ShadowOui-Hybrid: Transfocators

$$\Delta \phi(x, y, \lambda) = -\frac{2\pi}{\lambda} \delta(\lambda) \Delta t(x, y) = \frac{2\pi}{\lambda} OPD(x, y, \lambda)$$

Deformation of the wavefront from the thickness errors of the lenses of a Transfocator

Optical simulation tools in the OASYS suite and their applications to x-ray optics design

- Introduction to OASYS: basic features
- Basic loops, scanning loops, and thermal load calculations
- Ray-tracing and Wavefront propagation of refractive elements
- Ray-tracing of a real cylindrical mirror as generate by a bending device

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Mirror bender

- Analytical mirror bender calculation
 - M. R. Howells, et al., Opt. Eng. 39, 2748 (2000).

E — Young's modulus of elasticity

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC Implementatio
n in OASYS
Bendable

Elliptical Mirror

Bender vs Ideal profile Bender vs. Ideal Profiles $R^2 = 0.9999999990896068$ -2.5 -5.0 -7.5 N -10.0 -12.5 -15.0 -17.5 Bender error Correction Profile 1D, r.m.s. = 0.160294 nm, 0.155119 nm (optimized 0.2 uu] 0.0 -0.1 -0.2 -0.3 -150

osition	Basic Setting		Advanced Setting					
Surface S	hape	Reflect	ivity	Dimensions		Bender		
Bender	Setting	Fit Se	tting					
Surface	Setting							
bins Sa	gittal						100	
bins Tra	ansversal						500	
Bender S	Setting							
Young's Modulus [N/mm^2] 1310								
Thickne	ess [mm]						10	5
Kind Of Bender				Double Momentum 🔻				j
Shape				Trapezium				Ĵ
osition	Basic S	Setting	Adv	anced Set	ting			
Surface Shape Reflectivity				Dimensions Bender				
Bender	Setting	Fit Se	etting					
Out File I	Name	mirre	or_ben	der_v.dat	:			
Optimized	d Length	[mm]	(Partial 🔻			200	0.0
M1					1	1074.605884	4	
Min			0.0	Max		2000	.0 Eix	ed
Fitted						0.0	<- Us	e
M1/M2						0.90606	5	
Min			0.0	Max		10	.0 Eix	ed
Fitted						0.0) <- Us	e
e						0.6767	1	
Min			0.0	Max		1	.0 V Fix	ed
Fitted				, (0.0	<- Us	e

FEA analysis vs Analytical

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

THANK YOU!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

