

The European Synchrotron

Analysis and design of X-ray optical systems applying hierarchical models including partial coherence

Manuel Sanchez del Rio

ESRF (including work done in Berkeley)

High Precision X-ray measurements 8-10 June 2021

Motivation: optics for 4th generation synchrotron sources Hierarchical approach for beamline simulation (with examples) Ray tracing Wave optics Partial coherence

Crystal optics

Contents

4TH GENERATION SYNCHROTRON SOURCES

X-FEL

Bunch length ~ wavelength emitted:

emission from different electrons add coherently: almost full transversal (spatial) and longitudinal (time) coherence

STORAGE RINGS

Bunch length >> wavelength:

emission from electrons add incoherently: low longitudinal (time) coherence (then improved with monochromators) and partial transversal (spatial) coherence

DLSR (diffraction limited storage ring) sources: natural emission >> electron size.

At present diffraction limit (total coherence) can be attained at low photon energies only (< 1keV), but hard X-rays present partial coherence.

The beamline optics cam improve the coherence fraction (at the price of lowering intensity).

EBS – ESRF U18 2m @ 8 keV L=2m observed at 30m

Big increase of brightness and transverse coherence

Low Beta U18

High Beta U18

EBS U18

ALS-U

Analytical model (by hand)

Ray tracing (ShadowOui)

С

O

M

Ρ

Ε

X

5

Hybrid model (ShadowOui)

Simplified wave optics (WOFRY)

Monte Carlo (multi e⁻) wave optics (SRW)

Coherent Mode Decomposition (COMSYL/WOFRY)

M. Sanchez del Rio et al, JSR 26 1887 (2019) https://doi.org/10.1107/S160057751901213X

RAY TRACING CALCULATIONS WITH OASYS/SHADOWOUI

50

25

-25

-50

-75

-100

-125

-150

0

Evolved from SHADOW

Accurate values of

- Beam sizes including cropping, and aberrations
- Flux including o.e. physical models (reflectivity transmittivity)
- Monochromators/Analysers
- Incoherent addition of rays (no interference/diffraction)

New features

- Interoperability
- Optical element deformation database DABAM (Sanchez del Rio *et al.* <u>http://dx.doi.org/10.1107/S1600577516005014</u>)
- Corrections for coherence with Hybrid (Shi *et al.* <u>http://dx.doi.org/10.1107/S160057751400650X</u>
- Power transport (Rebuffi et al. http://dx.doi.org/10.1107/S160057752000778x)

ESRF

The European Synchrotron

ALS->ALS-U WHAT HAPPENS IF WE USE THE NEW SOURCE WITH AN EXISTING BEAMLINE?

ESRF

The European Synchrotron

EXAMPLE OF RAY TRACING: DIABOLOID

EXAMPLE OF WAVE OPTICS: CORRECTION OF THERMAL DEFORMATION WITH ADAPTIVE OPTICS

Ø Flexon wofry

(CF ~ 0.8 with a 4 m undulator at 230 eV)

M. Sanchez del Rio et al, JSR 2020 http://dx.doi.org/10.1107/S1600577520009522

Partial coherence (work with several wavefronts)

 $< E^{*}(x_{1}, y_{1})E(x_{2}, y_{2}) >= W(x_{1}, y_{1}, x_{2}, y_{2})$

1) Monte Carlo

 $N_x, N_y \in [100, 1000].$

 $W \sim 10^8 - 10^{12}$ (Gb-Tb)

- 4D W too big to calculate/store
- Not possible to calculate Coherent Fraction

2) Coherent Mode Decomposition

COMSYL (COherent Modes for SYnchrotron Light) https://github.com/oasys-kit/comsyl

 $< E^{*}(x_{1}, y_{1})E(x_{2}, y_{2}) >= W(x_{1}, y_{1}, x_{2}, y_{2}) = \sum_{i=0}^{\infty} \varphi_{i} \overset{\text{2D functions}}{\Phi_{i}^{*}(x_{1}, y_{1})} \Phi_{i}(x_{2}, y_{2})$

Store: m x N x N; Propagate: 2D integrals

M Glass, M Sanchez del Rio, EPL Europhysics letters (2017) http://dx.doi.org/10.1209/0295-5075/119/34004

COHERENT MODE DECOMPOSITION: SPECTRUM OF MODES (OCCUPANCY)

 $< E^{*}(x_{1}, y_{1})E(x_{2}, y_{2}) >= W(x_{1}, y_{1}, x_{2}, y_{2}) =$ $\varphi_i \Phi_i^*(x_1, y_1) \Phi_i(x_2, y_2)$

ALS-U U38 SOURCE 806 EV

 $< E^{*}(x_{1}, y_{1})E(x_{2}, y_{2}) >= W(x_{1}, y_{1}, x_{2}, y_{2}) = \sum \varphi(\Phi_{i})^{*}(x_{1}, y_{1}) \Phi_{i}(x_{2}, y_{2})$

SINGULARITIES IN THE PHASE OF THE CROSS SPECTRAL DENSITY

COMSYL 1.4-m-long U18 EBS (6 GeV, 147 pm rad emittance) Eo = 17.226keV (K =0.411) Intensity (spectral density)

D Paganin, M Sanchez del Rio, Phys Rev A (2019) http://dx.doi.org/10.1103/PhysRevA.100.043813

PROPAGATED BEAM: DIFFERENT TYPES OF SINGULARITIES APPEAR

Domain walls

Coherence vortices a,b, g

 $arg[W(x, y, x_P, y_P)]$

Vortex-antivortex hi,jk

Halo of CSD speckle

http://dx.doi.org/10.1103/PhysRevA.100.043813

SIMPLER 1D CMD WITH WOFRY (EBS U18 2.5M 7 KEV)

Undulator Light

Source U18 New EBS parameters

Vertical

Undulator Coherent

Mode Decomposition 1D

ESRF

Diagonalize Python

Script

Screen 1D @36m

Loop

stepper

(2) (D

ThinObje...

Undulator

pySRU

Info

Wofry ALS Extension

Real Lens

2D

Diagonal...

Python S...

ThinObje..

COHERENCE FRACTION MODIFICATION BY SLITS

CRYSTAL OPTICS

Dynamical theory of diffraction

Darwin/ Laue/Ewald/ James/ Zachariasen

Takagi-Taupin

Zachariasen/ Sears

Perfect plane crystals (Si, Ge, Diamond) 3-30 keV Laue (transmission) > 30 keV Bent (focusing) High d-space (Quartz, etc) 2-5 keV Ideally imperfect crystals (mosaic) Mosaic crystals

F

R

F

E

С

Т

Ν

F

S

Thank you very much

Many thanks to my colleagues at:

ESRF: J. Reyes-Herrera, R. Celestre, P. Brumund, M Glass
LBNL/ALS: A Wojdyla, H Padmore, K Goldberg, D Cocco, G Cutler
ANL/APS: L Rebuffi, X Shi, R. Reininger, Y Shvyd'ko
Monash Univ.: D Paganin

