The EupRAXIA@SPARC_LAB Project and related R&D activities at LNF Massimo.Ferrario@LNF.INFN.IT

HPXM Workshop, Zoom, June 8, 2021

EuPRAXIA@SPARC_LAB

http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-18-03-LNF.pdf

Expected SASE FEL performances

54	Chapter 2. Free Electron Laser design principles		
	Units	Full RF case	Plasma case
Electron Energy	GeV	1	1
Bunch Charge	pC	200	30
Peak Current	kA	2	3
RMS Energy Spread	%	0.1	1
RMS Bunch Length	fs	40	4
RMS matched Bunch Spot	μm	34	34
RMS norm. Emittance	μm	1	1
Slice length	μm	0.5	0.45
Slice Energy Spread	%	0.01	0.1
Slice norm. Emittance	μm	0.5	0.5
Undulator Period	mm	15	15
Undulator Strength K		1.03	1.03
Undulator Length	m	12	14
Gain Length	m	0.46	0.5
Pierce Parameterp	x 10 ⁻³	1.5	1.4
Radiation Wavelength	nm	3	3
Undulator matching β_u	m	4.5	4.5
Saturation Active Length	m	10	11
Saturation Power	GW	4	5.89
Energy per pulse	μ	83.8	11.7
Photons per pulse	x 10 ¹¹	11	1.5

Table 2.1: Beam parameters for the EuPRAXIA@SPARC_LAB FEL driven by X-band linac or Plasma acceleration In the Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV) water is almost transparent to radiation while nitrogen and carbon are absorbing (and scattering)

Coherent Imaging of biological samples protein clusters, VIRUSES and cells living in their native state Possibility to study dynamics ~10¹¹ photons/pulse needed Courtesy F. Stellato, UniToV

FEL is a well established technology

(But a widespread use of FEL is partially limited by size and costs)

Maximum Beam Energy

Principle of plasma acceleration

BELLA, Berkeley Lab, US

Laser Driven Plasma Wakefield Acceleration Facility: Today: PW laser!

Beam Quality Requirements

Future accelerators will require also high quality beams :
==> High Luminosity & High Brightness,
==> High Energy & Low Energy Spread

 ϵ^2

-N of particles per pulse => 10^9 -High rep. rate f_r => bunch trains

-Small spot size => low emittance

-Short pulse (ps => fs)

-Little spread in transverse momentum and angle => low emittance

Worldwide effort towards high quality plasma beams

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Design Study started on Novemebr 2015 Approved as HORIZON 2020 INFRADEV, 4 years, 3 M€ Coordinator: Ralph Assmann (DESY)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

http://eupraxia-project.eu

EuPRAXIA Conceptual Design: Complete

Conceptual design report submitted as planned to EU on November 1st

- First ever international design of a plasma accelerator facility
- Funded 2015-2019 by European Union (Horizon2020) with 3 Million Euro
- Coordinating lab: DESY (R. Assmann)
- Growing consortium: 32 → 41 labs, ELI, CERN, LBNL, Osaka, Shanghai, Russian labs
- Industry: Thales (France), Amplitude (France), Trumpf Scientific (Germany)

653 page CDR, 240 scientists contributed

http://www.eupraxia-project.eu/

EuPRAXIA Brings together European Actors in this Field...

Position Europe as a Leader in the Global Context

... and Builds a European Distributed Facility

Position Europe as a Leader in the Global Context

- 1. Lean overall EuPRAXIA management
- Ten clusters: Collaborations of institutes on specific problems, developing solutions, technical designs, driving developments with EuPRAXIA generated funding → expertise of Helmholtz centers required - opportunities
- 3. Five excellence centers at existing facilities: Using pre-investment, support tests, prototyping, production with EuPRAXIA generated funding → DESY excellence center
- 4. One or two construction sites at existing facilities with EuPRAXIA generated funding:
 - · Beam-driven at Frascati (Italy).
 - Laser-driven at CLF/STFC (UK), CNR/ INFN (Italy) or ELI-Beamlines.

ESFRI Proposal: Submitted on September 9

- EuPRAXIA strongly supported in European research landscape, it is timely, it offers highly attractive opportunities for innovation with industry, novel applications and pilot users.
- Lead Country: Italy (LNF/INFN)
 Political and financial support letter sent to
 ESFRI by Italian Ministry
- **Political support letters** (at least two needed from countries):
 - Hungary
 - Portugal
 - Czech Republic (ELI))
 - UK

EUPRAXIA

Note: All operational costs covered by host countries.

From political landscape it is seen that both Czech Republic and UK would be excellent sites for the second leg of EuPRAXIA, connecting to existing facilities with laser expertise and few 100 million € pre-invest.

SPARC_LAB HB photo- injector

X-band Linac

Plasma WakeField Acceleration

Undulators

KYMA Δ udulator at SPARC_LAB: λ =1.4 cm, K1

Photon beam line

PWFA vacuum chamber at SPARC_LAB

High Quality Beam

M. Migliorati et al, Physical Review Special Topics, Accelerators and Beams 16, 011302 (2013) K. Floettmann, PRSTAB, 6, 034202 (2003)

Assisted Beam Loading Energy Spread Compensation

Achieved 4 MeV acceleration in 3 cm plasma with 200 pC driver

~133 MV/m accelerating gradient

2x10¹⁵ cm⁻³ plasma density

demonstration of energy spread compensation during acceleration

Energy spread reduced from 0.2% to 0.12%

99.5% energy stability

Thank for your attention