BACKGROUND STUDIES: SUMMARY AND FUTURE WORKS

Eugenio Paoloni Università & INFN Pisa

OUTLINE

- Background sources
- Updates on Touschek rates
- Open questions
- Future work

BACKGROUND SOURCES

- Pair Production
- Touscheck particles
- "Beam Beam"
- Single beam

PAIR PRODUCTION

- ▶ Generator: Diag36
- ▶ Affect SVT Layer o

the state of the s

Fig. 1. One of the sixteen bremsstrahlung graphs representing the leading t-channel d

Fig. 2. One of the eight Feynman diagrams for multiperipheral dynamics.

RATE VS RADIUS

- Occupancies based on parametric simulation
- Geant4 simulation still in the TODO queue

Cluster multiplicity = I

TOUSCHEK BACKGROUNDS

- Particles in the same bunch can undergo
 Touschek scattering and escape the ring energy acceptance window
- ▶ Off energy particles are overbent/underbent by the magnetic elements till they hit the vacuum chamber producing backgrounds
- ▶ Manuela Boscolo (LNF) developed a tool to simulate Touschek scattering around the ring validated on Daphne

TOUSCHEK (CDR DESIGN)

EVENT DISPLAY

CDR TOUSCHEK RATE

	e ⁺ Rate (MHz/cm ²)		e ⁻ Rate (MHz/cm ²)		total	
Shielding	W	Air	W	Air	W	Air
Layer 0	8.86	6.42	14.3	8.59	23.16	15.01
Layer I	11.5	10.8	24.3	26.0	35.8	36.8
Layer II	8.0	7.0	21.5	12.2	29.5	19.2
Layer III	2.5	2.5	5.5	9.7	8	12.2
Layer IV	0.045	0.96	0.84	0.67	0.885	1.63
Layer V	0.017	0.06	0.50	0.40	0.517	0.46

NEW MACHINE PARAMETERS AND COLLIMATORS

Layer	Old (kHz/cm2)	New (kHz/cm2)
0	23160	3.7
1	35800	7.0
2	29500	2.6
3	8000	4.9
4	885	0.0
5	510	0.0

BEAM-BEAM

- Beam halo: non gaussian tails in the transverse profile of the bunches
- Beam halo depends on:
 - machine imperfections, non linearity in the single turn map of the ring
 - beam beam non linear forces

BEAM-BEAM

• Hard (if ever possible) to simulate from first principle...

Beam Blowup weak-strong simulations

L=10³⁶ cm⁻² s⁻¹

SINGLE BEAM

- In the CDR we scaled the BaBar occupancies by a factor close to I
- BaBar single beam post-diction: "Years to make it working for the HER..." (P.Grenier)

Figure 1: Single-beam SVT ϕ chip occupancies measured with a $1 \text{A} \, e^+$ beam (solid circles) and predicted by G4 (histograms) for layer 1 (top) and layer 2 (bottom). The simulation assumes a 1 nTorr pressure around the ring.

OPEN QUESTIONS

- Beam-beam halo: how to produce a reasonable extimate?
- Single beam: can we afford to simulate the SuperB beam line with the needed accuracy (human time)?
- Are we forgetting some other source of backgrounds?

TO DO LIST

- Gean4 simulation of pair production
- Radiation dose evaluation on silicon detector wafers
 and readout electronic silicon wafers
- Implement a more accurate algorithm to handle detector segmentation and to simulate cluster multiplicity
- Machine experts involvement in the "beam halo" problem