PravdaMC: Status and Known Issues

Chih-hsiang Cheng Caltech SuperB Workshop @ SLAC 2008/02/15

What is PravdaMC?

- The PravdaMC package is a fast simulation that parametrizes the detector responses in BaBar computing framework. [N. Kuznetsova, A. Ryd]
- Uses EvtGen to generate events (you got a list of truth BtaCandidates).
- The detector is described in ASCII files, to be read by the tracking algorithm trackerr which smear charged track candidates.
- Neutrals are smeared by simple resolution formula.
- Results are lists of charged and neutral BtaCandidates for your analysis.

Trackerr

- Trackerr [W. Innes, ca. 1991] is the core of the PravdaMC simulation.
 - Allows CYLINDER, CONE, and DISK geometries.
 - Tracks follow a helical trajectory to find intersections with active layers.
 - Does not scatter trajectory or lose energy at individual hits, only assign a global error matrix based on total energy loss and multiple scattering.
 - Implemented in Fortran.

Detector Description Files

Read in by trackerr

ISIVF barrel Si (390 microns equiv) r thick sig zfi zbi stereo mat ! note: thickness must be in gr/cm2 layer 1 DETECTOR SIS 1.5 0 3.30 0.091 0.0013 11.168 -5.815 0. Si phi I AYFR Si DETECTOR SIS 0.2 0.8 LAYER 3.33 0.00 0.0015 11.168 -5.815 1.5708 Si z Si ! support ribs - diffused Cfbr 3.55 0.016 1e5 11.168 -5.815 LAYER 0.

BaBar geometry files are available in the package.
 A couple of perl scripts allow you to modify parts of the detector easily.

Neutrals

- Photon energies are smeared based on a simple energy resolution formula.
- EMC acceptance (and resolution) is hard coded in the C++ code. It doesn't look like having to do with the detector files used by trackerr.
- It's unclear to me how neutral hadrons are treated, perhaps not at all.

Particle ID

DIRC and IFR responses are not available.

Particle ID efficiencies/fake rates are achieved by "PID killing" based on Babar PID ASCII tables.

Beam parameters

Beam energies, boost, and beam spot parameters can be changed by pointing tcl parameters of PepBuildEnv to customized configuration files.

Status of the Package

- It has been updated to be used in Babar software release 24.
- The code is sufficiently modulized. Easy to add classes to expand its function.
- A simple recipe in README of PravdaMC V01-00-10.
- No other packages need to be checked out.
- A couple of example tcl files allow you to create ntuples out of the box.

Example: $B \rightarrow J/\psi(\mu\mu)Ks(\pi+\pi-)$

Speed

Generate 100k Y(4S)->B0B0ar->pi+pi-X events, reconstruct B0->pipi, and dump a short ntuple:

CPU time= 14 ms/evt on 2GHz Dual Core AMD Opteron.
Top modules

ms module	dump ntuple
2.83690 BtuTupleMaker	smaan lists
2.48000 PmcMakeBtaCandLists 🛩	Silicul LLSUS
2.06960 GfiEvtGen <	— event generator
1.88860 BtaMicroPidKilling 👡	- DTD killing
0.68520 RacTestInput	FID KLLLIIG
0.57090 MakeBasicLists	
0.40840 RandomControl	
0.32180 VtxEvent	
0.27590 BtaLoadChiSqAssoc	

Known Issues

- The code seg-faults at the end of the job. It looks like problems in some ROOT class destructor, but can be memory allocation problem. The resulting ntuple is not affected.
- Lack of hit-level information, even the basic ones such as #DCH hits, #SVT hits, EMC clusters, DIRC Cherenkov angles, etc. Some analyses may not be able to perform.
- Trackerr is in a very long Fortran code, very difficult to understand/debug/maintain.

Known issues (cont.)

- There is no description of DIRC and IFR.
- How are neutral hadrons treated?
- Poor job on low momentum tracks because trackerr doesn't scatter or lose energy at hits.
- There are no reco objects and GHits. It is not clear whether events can be written to event store. We cannot persist BtaCandidates.
 - Eventually we want to generate billions of events. You want to put them into some kind of event store, not giant ntuples.

Conclusion

- PravdaMC is in a reasonably good shape for simple fast simulation studies.
- You can use virtually all BaBar modules/tools as long as they only deal with BtaCandidate parameters and nothing deeper.
- Many known (and likely more unknown) issues. Some need to be solved before we can do large productions.
- Detector developers and physics sensitivity analysts are encouraged to try it, give feedback and/or help develop.