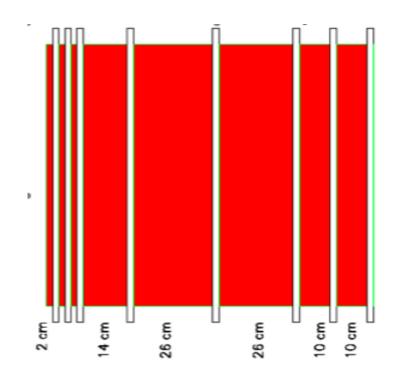
SuperB Detector R&D Workshop SLAC 14-16 Feb 2008

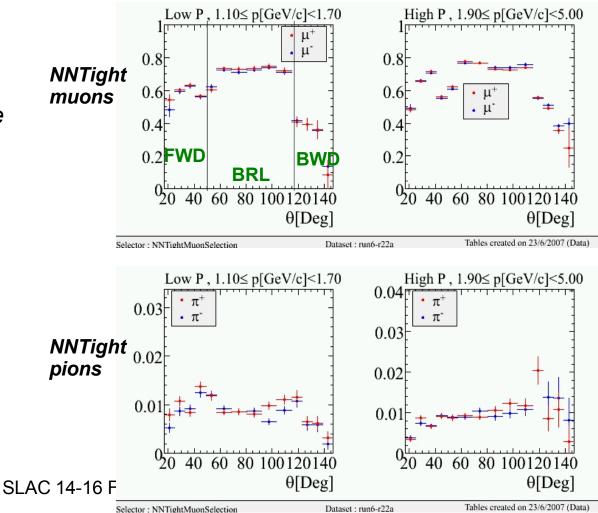

IFR fast simulation

Mirco Andreotti, Gigi Cibinetto, M.R.

CDR baseline

Baseline

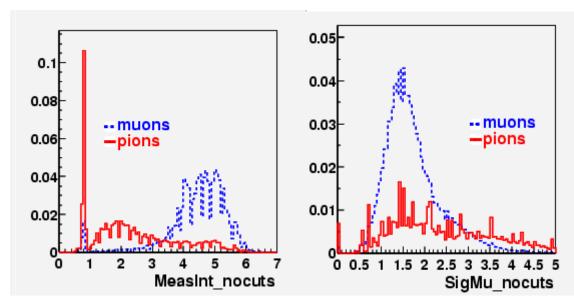
- Add iron to BaBar stack to improve μ ID.
 - → 7-8 detection layers.
- Re-use BaBar steel (still to be fully assessed)
- Keep longitudinal segmentation in front of stack to retain K_L ID capability.
- Backgrounds are problematic for gas detectors.
 - → Use Minos style scintillation bars.


Fast Simulation

PravdaMC: the DIRC and the IFR are not described

 At present: the overall PID efficiency/mis-ID is given using the BaBar PID tables (ASCII files)

Order 0:


- Redo the tables with reasonable guess on the mis-ID and efficiency
- Use the estimated inefficiency (parameterized in P, θ, φ) obtained from the detector optimization studies
- (equalize the FWD and the BWD parts)

Fast Simulation

Order 1:

- A parameterized output can be easily provided in Pravda, using the existing reconstructed output from BaBar IFR reconstruction, for example:
 - N-Interaction lenghts
 - hit multiplicity x layer
- Run the (almost)standard muon selector on these quantity

- Advantages: implicitly these PDFs parameterize the hadron showers;
- These PDFs need to be changed according to the full simulation or using reasonable guesses;
- The effect of the background can be propagated to these PDFs according to the detector optimization studies

Preliminary conclusions

- To implement a reliable Fast Simulation a detailed parameterization of the hadronic showers and the inefficiency due to the background is:
 - · important for μ/π separation, and crucial for the K_L identification
- The inefficiency due to the bkg, parameterized as a function of (P, θ, ϕ) , can be used in a Fast Simulation (PravdaMC Stile)
- The IFR fast simulation with Pravda can be done at different level of details
- Many analysis studies does not crucially depend on the IFR details