

Report on hardware tests, MC studies, next steps and activities towards the TDR

Peter Križan *University of Ljubljana and J. Stefan Institute*

SuperB PID, Feb. 15, 2008

Hardware activities

Photon detectors

- •MCP PMTs
- •SiPMs

MC studies

- Aerogel RICH
- Barrel PID device

SIPMs: Cosmic test setup

- 6 Hamamatsu SiPMs used:
 - → 2x 100U; background ~400kHz
 - → 2x 050U; background ~200kHz
 - → 2x 025U; background ~100kHz
- signals amplified (ORTEC FTA820),
- discriminated (EG&G CF8000) and
- read by multihit TDC (CAEN V673A)
 with 1 ns / channel

SiPM: Cherenkov angle distributions for 1ns time windows

Cherenkov photons appear in the expected time windows → First Cherenkov photons observed with SiPMs!

SiPM Cherenkov angle distribution

Fit function is a combination of

- a background (quadratic) and
- a signal (Gaussian).

Only scale parameters are free – others fixed.

→ SiPMs give 4 x more photons than PMTs per photon detector area – in agreement with expectations

hthc1

SIPMs: improving signal/noise

Improve the signal to noise ratio:

- Reduce the noise by a narrow (few ns) time window
- •Increase the number of signal hits per single sensor by using light collectors and by adjusting the pad size to the ring thickness

Light collector with reflective walls

or combine a lens and mirror walls

Light collection: improve signal to noise ratio

Machined from a plastic plate (HERA-B RICH lens material). 3.5mm

average transmission 0.52

SuperB PID session

Peter Križan, Ljubljana

Cherenkov photons with light collectors

 $N_{\text{with}} / N_{\text{without}} \sim 2.2$

- ★ in agreement with the expectations
- ★ Further improvements possible by
 - reducing the epoxy protective layer
 - using better light collector

Detector module design

SiPM array with light guides

Photon detectors, summary

BURLE 85011 MPC PMT (see my report on Dec 13)

- Best understood, beam and bench tested, excellent timing
- Open issues: ageing, read-out for fast timing
- How well can we determine TOF start time at IP?

SiPM (G-APD)

- Very good first results
- Open issues: radiation hardness, read-out with narrow time window

→ Plan:

- Beam (March and June) and bench (ageing) tests in spring.
- Measure n flux inside Belle

MC studies

Barrel device

- Simple MC of Time-Of-Propagation counter
- Reconstruction and likelihood function construction
- Could be adapted to the focusing DIRC needs

Forward RICH

- Full Geant4 MC
- Reconstruction

Next steps

Photon detector tests: establish which type survives in the detector, and is affordable; test the read-out options

- → Beam and bench tests in the next half a year
- → Tests of electronics (wave sampling with Gary, ASIC with KEK/TMU)

MC:

- → Refine the description for the forward device
- → Work on the reconstruction for the full MC of the barrel device (if time available...)