Report from SuperB Workshop VI (Valencia Physics Retreat)

SuperB Detector Workshop I SLAC, 14-16 Feb, 2008

F. Martínez-Vidal IFIC – Universitat de València-CSIC

Format the Workshop

	Mo 7 th	Tu 8 th	We 9 th	Tw 10 th	Fr 11 th	Sa 12 th	Su 13 th	Mo 14 th	Tu 15 th
9:00 9:30 10:00	Registration	Plenary III	Working groups	Working groups	Working groups	Plenary V (Summary WGs)		Preparation of the document	Preparation of the document
10:30		Coffee	Coffee	Coffee	Coffee	Coffee		Coffee	Coffee
11:00		Plenary IV	Working groups	Working groups	Working groups	Plenary VI (Summary WGs)	Excursion to the Albufera lake		
11:30								Preparation of the	Preparation of the
12:00								document	document
12:30									
13:00	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch			
13:30								Lunch	Lunch
14:00									
14:30								Preparation	
15:00	Welcome	Working	Working	Working	Working	Plenary VII	ioi	of the	End session
15:30	Plenary I	groups	groups	groups	groups	(Summary WGs)	Excurs	document	36331011
16:00									
16:30	Coffee	Coffee	Coffee	Coffee	Coffee			Coffee	
17:00									
17:30	Plenary II	Working	Working	Working	Working			Preparation of the	
18:00	ıı ıı	groups	groups	groups	groups			document	
18:30									
					Dinner (21:00)				

Goals of the workshop (and beyond)

Goals:

- Sharpening the discovery potential of the Super Flavour Factory
- Simulation studies including detector response and machine parameters
- Answers to IRC questions
- New ideas not considered in CDR
- Identify benchmark channels whenever possible
- Refine SuperB sensitivity estimates
 - Go beyond what is in the CDR
 - Realistic machine and detector simulation
 - Work closely with tools group
- Few presentations to stimulate interesting discussions
 - Introductory plenary talks on Monday afternoon and Tuesday moorning
 - Reports from WGs on Saturday
 - Few presentations in Parallel sessions
 - Stimulate discussions and "attractions"
- Started discussing and preparing document for IRC and P5 review on Monday and Tuesday of the 2nd week

Organization

WORKING GROUPS

WG 1 Tau Physics: LFV, CPV, EDM	Conveners: G.Isidori gino.isidori@Inf.infn.it A.Lusiani alberto.lusiani@pi.infn.it M.Roney mroney@uvic.ca P.Paradisiparide.paradisi@uv.es				
WG 2	Conveners:				
Charm Physics: CPV in D ⁰ mixing	D.Asner asner@physics.carleton.ca I.Bigi ibigi@nd.edu F.Martínez-Vidalfernando.martinez@ific.uv.es				
WG 3	Conveners:				
Spectroscopy: new states and decay modes	R.Facciniriccardo.faccini@roma1.infn.it A.Polosa a.polosa@roma1.infn.it				
WG 4	Conveners: M.Ciuchini ciuchini@roma3.infn.it T.J.GershonT.J.Gershon@warwick.ac.uk A.Stocchi stocchi@lal.in2p3.fr				
B Physics: Observables sensitive to New Physics					
WG 5	Conveners:				
Tools	M.Rama rama@slac.stanford.edu				

Assumptions

- SuperB will accumulate 75/ab on the Y(4S)
 - Beam energies 7 GeV e⁻ on 4 GeV e⁺
 - 5 years operation @ $L_{peak} \sim 10^{36}/cm^2/s$
 - Data taking starts $\sim 2015 \Rightarrow 75/ab$ by ~ 2020
- SuperB can operate at different energies
 - L_{peak} scales with s
 - $L_{peak} \sim 10^{35}/cm^2/s @ \psi''(3770)$
- SuperB will be able to work with 80% polarized electron beam
- LHC operation will be successful
 - LHCb will accumulate 10/fb before SuperB starts
 - ATLAS & CMS will have plenty of data
 (no assumption whether or not NP is discovered at LHC
- SuperKEKB will start at ~2012 and will accumulate 10/fb @ Y(4S)
- BESIII will have accumulate 15/fb at $D\overline{D}$ threshold (100×smaller peak luminosity)

WG I - Tau physics: LFV, CPV, EDM

Tau physics topics, progress since CDR

LFV Decays

- NP model estimates for SM points
- exp. sensitivity re-assessed
- compare with SuperKEKB and MEG

CPV in tau decay

extrapolation from CLEO search

Tau EDM

- NP predictions updated
- exp. sensitivity estimate improved with
 - phenomenology paper
 - generator level simulations
 (tau production with polarized electrons)

Charged Current Universality Measurements

no advancement (syst. limited)

CPT test on tau lifetime

- no dedicated work
- ♦ 2nd priority vs. golden channels

CPT test on tau mass

no dedicated work (syst. limited)

Tau g-2

- NP predictions updated
- related to (g − 2) via SUSY
- exp. sensitivity estimate improved with
 - phenomenology paper
 - generator level simulations (tau production with polarized electrons)

Tau physics: LFV

New physics predictions for tau LFV decays

- ♦ new work by M.Herrero, E.Arganda, J.Portoles
- work in parallel by G.Isidori and P.Paradisi
- predictions at Snowmass points for $\mu \to e\gamma$, $\mu \to 3\ell$, $\tau \to \ell\gamma$, $\tau \to 3\ell$, $\tau \to \ell hh$, ℓP^0 , ℓV^0
- $\uparrow \tau \rightarrow \mu \gamma$ generally most powerful probe
- ♦ sensitivity of 10⁻⁹ probes significant portion of NP parameter space
- ◆ Tau LFV decays confirmed as SuperB golden channels for NP discovery

SuperB sensitivity for LFV decays

- experimental sensitivity re-assessed by
 - mentioning conservative extrapolations of known results
 - estimating possible SuperB improvements, also with simulations
 - investigating the advantages of polarized beams

Tau physics: LFV in $\tau \rightarrow \mu \gamma$

Conservative Super*B* sensitivity for $\tau \rightarrow \mu \gamma$

Conservative estimate of exp. sensitivity

- ♦ start from last published B-Factories paper (BABAR, 232 fb⁻¹)

$$N_{\text{BGK}} = 6.2 \cdot (\mathcal{L}/232 \, \text{fb}^{-1})$$
 $\epsilon = 7.42\%$

- $\oint \mathcal{L} = 75 \text{ ab}^{-1} \longrightarrow UL_{\text{EXP}}^{90} = 7.10^{-9}$

conservative guaranteed scaling with $\sqrt{\mathcal{L}}$

Improvements on Super*B* sensitivity for $\tau \rightarrow \mu \gamma$

- kinematic $\mu\mu\gamma$ rejection: in progress
- ◆ BABAR analysys re-optimization: in progress
- ♦ SuperB lower asymmetry, better geom. coverage: estimate UL better by 5%
- improved detector hermeticity, to be studied
- lack smaller beam-pipe, more precise d_0 reconstruction: to be investigated
- electron beam polarization
 - done generator level simulations KK & Tauola
 - re-optimized for SuperB at 75 ab⁻¹ the mu. γ angular cuts
- veto muons in tag-side (modest gain)
- remove muon ID to increase efficiency, in progress
- LFV with SuperB is a clean and powerful probe for New Physics
- SuperB less powerful than $\mu \rightarrow e\gamma$ but highly complementary

Tau physics: CPV and EDM

T/CP-odd observables in tau decay

- no exp. sensitivity for most common NP scenarios
- effects with R-parity viol. SUSY or non-SUSY multi-Higgs up to the current UL from CLEO
- extrapolating from CLEO limit, SuperB can improve by a factor 130

Tau EDM

- no exp. sensitivity for most common NP scenarios given the electron limit
- ♦ enhancements up to 10⁻²² ecm in multi-Higgs models
- polarized beams improve SuperB sensitivity (arXiv:0707.1658 [hep-ph])
- exp. sensitivity estimated in above reference
- estimate refined with simulation, first estimate of syst. limitations
- SuperB sensitivity now estimated at ≈ 10⁻¹⁹ ecm
- CPV in tau decay and EDM can be measured precisely
- However only some specific NP models predict measurable effects

Tau physics: g-2

Tau (g-2)

- assuming SUSY explains $(g-2)_{\mu}$ exp. vs. theory discrepancy
 - \rightarrow $\Delta_{SUSY}[a_{\tau}] \approx 10^{-6}$ and enhancements up to 10^{-5} are possible
- polarized beams improve SuperB sensitivity (arXiv:0707.2496v1 [hep-ph])
- exp. sensitivity estimated in above reference
- estimate refined with simulation, first estimate of syst. limitations
- SuperB sensitivity now estimated at $\Delta a_{\tau} = 2.4 \cdot 10^{-6}$
 - SuperB can test whether SUSY is a viable explanation for muon g-2 discrepancy

Tau physics: Beam polarization

Beam polarization in SuperB

- ♦ SuperB will be able to work with 80% polarized electron beam
- lack improved exp. sensitivity for tau EDM and g-2
- possibly, adgantages also for LFV searches

Beam polarization simulations

- checked that KK and Tauola properly simulate
 - polarized colliding beams
 - outgoing tau polarization, with effects on decay products angular distributions
 - also longitudinal and transverse tau spin correlations are simulated
- millions of events in specific decay modes have been simulated and studied

Polarization of the electron beam gives SuperB an additional advantage w.r.t. SuperKEKB, particularly for the tau EDM and g-2 measurement, possibly also for LFV

SuperB statistics is always an advantage wrt SuperKEKB

WG II – Charm physics: Mixing and CPV

Prologue: New Physics Scenarios & Uniqueness of Charm

- New Physics in general induces FCNC
 - their couplings could be substantially stronger for Up-type than for Down-type quarks (actually happens in some models which `brush the dirt of FCNC in the down-type sector under rug of the up-type sector)
- SM `background' much smaller for FCNC of Up-type quarks
 - cleaner -- albeit smaller -- signal!
- CPV, either in decay or in mixing or interference, is the way to Search for New Physics
- At SuperB precision measurements of mixing should be considered as a tool for searches for CPV and as validation of SuperB charm CP studies
 - Ambiguous probe for New Physics (long distance QCD effects...)

New physics via charm CPV

Finding GP somewhere in $\Delta C \neq 0$ is a seminal discovery -yet not a program, `merely' its first step!

Program (exp)

Study CP & T in

- ΔC = 1 vs. ΔC = 2; i.e., direct vs. indirect CF via t dependance
- □ CF vs. CS vs. DCS
- partial rates vs. Final State Distributions (FSD)
- down to 10⁻³ 10⁻⁴ levels
 using runs at ~ 10 GeV & ~ 4 GeV

Program (th)

- Develop phenomenology for GP & Tin FSD
- Derive reliable SM predictions
- Analyze NP scenarios -- in particular Little Higgs Models

Charm physics: indirect CPV (in mixing)

Observable sensitive to |q/p| ($\Delta C=2$)

Observable sensitive to
$$|q/p|$$
 ($\Delta C=2$)
$$A_{sl} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{|q|^4 - |p|^4}{|q|^4 + |p|^4}$$

$$N^{++} = \overline{D}^0 \to l^+ \nu K^-, \quad N^{--} = D^0 \to l^- \overline{\nu} K^+ \quad D^0 = -, \overline{D}^0 = +, \quad l^{\pm} = \pm D^0 \to K^+ \pi^-$$

- At threshold $-\psi$ ''(3770)-, time dependent asymmetry can reveal a new source of WS leptons (violation of SM selection rules)
- Use sum of several exclusive channels

D⁰ → K-π+, K-π+π⁰, K-π+π⁰, K-π+π+π-,
K-e+ν, K*-e+ν , K-μ+ν, K*-μ+ν, K+K-, π+π-
(Σ (ε×
$$\mathcal{B}$$
) ~ 22.7%)

- Measurement can be performed
 - At threshold with D double-tagging
 - Clean environment (closed kinematics), smaller systematics
 - Sensitivities: $\delta A \sim 2.5\%/month$ (Only sl D⁰ \rightarrow K⁻ ℓ +v $\delta A \sim 9.5\%/month$) \rightarrow 4 months of running @ threshold (0.6 ab) \rightarrow $\delta A \sim 1\%$
 - At Y(4S) with D* tagging
 - More background, possible to tag the other c quark
 - Sensitivities: δA ~ 2.7%/year \rightarrow 5 years of running (75 ab) \rightarrow $\delta A \sim 1\%$

Charm physics: CPV in interference of mixing and decay $D^0 \rightarrow CP$

- Observable sensitivity to $\phi = \arg\left(\frac{q}{p}\frac{\overline{A}_f}{A_f}\right)$ (interference between $\Delta C=1$ and $\Delta C=2$)
- Lifetime measurements in CP eigenstates: time distribution is exponential only approximately. Good approximation since mixing and CPV are small

$$y_{CP} = \frac{\tau_{K\pi}}{\left\langle \tau_{hh} \right\rangle} - 1 \quad , \quad \Delta Y = \frac{\tau_{K\pi}}{\left\langle \tau_{hh} \right\rangle} A_{\tau}$$

$$2y_{CP} = \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$

$$2A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$

$$A_{\Gamma} = \frac{\tau(\overline{D}^{0} \to CP) - \tau(D^{0} \to CP)}{\tau(\overline{D}^{0} \to CP) + \tau(D^{0} \to CP)}$$

- May require full time-dependent analysis with SuperB statistics
- Sensitivities with 75/ab: $\sigma(\cos\phi) \approx \sigma(y_{CP})/y \approx 3 \times 10^{-4}/y$ $\sigma(\sin\phi) \approx \sigma(\Delta Y)/x \approx 3 \times 10^{-4}/x$

Charm physics: direct CP

- Estimates from BaBar analysis to 75/ab from 2-body decays
 - $D^0 \rightarrow K^+\pi^-$ in time dependent analysis

$$D^{0} \to K^{+}\pi^{-} \qquad A_{D} = \frac{R(D^{0} \to K^{+}\pi^{-}) - R(\overline{D}^{0} \to K^{-}\pi^{+})}{R(D^{0} \to K^{+}\pi^{-}) + R(\overline{D}^{0} \to K^{-}\pi^{+})} \qquad \qquad \sigma(A_{D}) \sim 0.4\%$$

- $D^0 \rightarrow K^+K^-, \pi^+\pi^-$ in time independent analysis (in this case, direct CPV effect mixed with indirect)

$$D^{0} \to CP$$

$$A_{CP} = \frac{R(D^{0} \to K^{+}K^{-}) - R(\overline{D}^{0} \to K^{-}K^{+})}{R(D^{0} \to K^{+}K^{-}) + R(\overline{D}^{0} \to K^{-}K^{+})}$$

σ(*A_{CP}*)~0.03%

- Dalitz plot analysis, time integrated (e.g. Kshh)
 - Strong phase variation over resonances of the Dalitz plot can improve the sensitivity to the asymmetry
 - Asymmetry on regions of phase spaces can have different signs which could averaged out when integrating over the DP
 - Comparison of time-integrated CP conjugate DPs (model indep.) vs model dep.
 - From D⁰ $\rightarrow \pi^+\pi^-\pi^0$, expect sensitivity at 3×10⁻⁴ at SuperB
- Todd correlations in Cabibbo Suppressed decays $D^0 \to K^+K^-\pi^+\pi^-$

Charm physics: 3-body decays and running energies

- Time-dependent Dalitz plot analyses are the golden modes for mixing, CPV in interference from mixing and decay, and perhaps too direct CP
 - Requires to keep under control Dalitz model systematics
 - Improved models with larger statistics
 - Full PWA analyses
 - Make use of threshold data
 - Very hard to estimate w/o performing analysis, but extremely promishing
- Running at $\psi(3770)$ is important
 - Quantum coherence provides unique oportunity to directly measure and/or validate from other (mostly model dependent) measurements $D-\overline{D}$ strong phase

•
$$(x',y') \rightarrow (x,y)$$
 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

- Dalitz model systematics in 3-body (e.g. $K_S \pi \pi$) analyses
- Time-dependent measurements possible, but poor time resolution ($\sigma_t \sim \tau$) and poor statistical reach (cross-section 3×wrt 10GeB but luminosity 10×smaller)
- 0.6/ab (~4 months) would give ~1% (very clean) CPV in mixing

WG III – Spectroscopy: New states and decay modes

The Physics Case

- There are indications that strong interactions do not only form mesons and baryons, but also other forms of aggregation
 - A major step forward in the understanding of nature (strong interactions)
 - Converting these indications into a solid set of measurements is within the reach of SuperB
 - Twofold task:
 - Discriminate among possible interpretations (regular mesons, molecules, tetraquarks, hybrids,...)
 - Complete the picture
 - Very large number of missing states
 - Operatively we will assume the tetraquark model is correct and explore the observables that are unique to SuperB
- There are new physics models that predict Higgs bosons at masses below 2m_b to have escaped LEP searches.
 - We will explore which are the search channels that require SuperB statistics

Search for resonances:

With non-quarkonium JPC

Unnaturally small widths

Not null charge: would be clear indication of something new going on

Spectroscopy: light quark mesons and charmonium

Light meson spectroscopy

• Possibility that the scalar none is a

tetraquark

- Stengthened by recent dispersion relation studies of BaBar+KLOE data
- BaBar candidate for a 1- excitation Y(2175), in ϕf_0
 - Very low stat
- Room for investigating whether $f_0(1500)$ is a glueball, search for additional states,...

Charmonium spectroscopy

- X(3872/6), Y(4360), Y(4660),
 Z(4330) are most likely tetraquark candidates
 - Low stat
- The best way to discriminate between tetraquark and other models are the semileptonic decays
 - E.g. $X(3872) \rightarrow D_s \pi^0 l \nu$ allowed only by tetraquark, $D^{*0}D^0$ molecule could only go to $D^{*0}Kl\nu$
 - Cabibbo suppressed + v
 (experimental challenge)
- BFs to two $D_{(s)}$ mesons \Rightarrow need high statistics

Spectroscopy: Bottomonium

2 h_b and 3 D wave states are narrow but not observed

8 narrow resonances still missing!

The large number of missing states is due to low individual BFs and large background

Spectroscopy: Exotica Searches in bottomonium

- Light Higgs (lightest CP-odd Higgs in NMSSM):
 - $Y(nS) \rightarrow \gamma A_1 (n=1,2,3)$ [$Y(mS) \rightarrow Y(nS)\pi\pi$] - $A_1 \rightarrow \tau\tau$

• Measure $R=BF(Y\rightarrow \tau\tau\gamma)/BF(Y\rightarrow ll\gamma)$

- Extra dimensions
 - Direct searches for gravitons: $e^+e^- \rightarrow G \gamma$ (single photon)
- SUSY & Light Dark Matter
 - Direct searches: Y→invisible (particles which are not observed, typically LSPs)

Do B-Factories already saturate the discovery potential?

Spectroscopy: running at different energies

- Identified energies of interest:
 - -Y(3S) run
 - 0.3 ab-1 (~2 months) would already decuplicate the BF sample
 - Energy scan in 4-5 GeV range?
 - Produce the plot of $R_c = \sigma(c)/\sigma(ll)$, with c= several channels of interest (e.g. $J/\psi \ \pi\pi,...$)
 - BES does not reach these energies

WG IV – B Physics

Many B physics observables sensitive to New Physics

$$\begin{array}{|c|c|c|c|c|} \hline \Delta m_d & A_{SL}(B_d) & S \lor B_d \to J \lor \psi K_S & S \lor B_d \to \psi K_S \\ \hline \alpha(B \to \pi \pi, \nu \pi, \rho \rho) & y \lor B \to DK & C \lor M \text{ fits} \\ \hline \Delta m_s & A_{SL}(B_s) & S \lor B_s \to J \lor \psi \phi & S(B_s \to \psi \phi) \\ \hline B(b \to s \gamma) & A_{CP}(b \to s \gamma) & S(B^0 \to K_S \pi^0 \gamma) & S(B_s \to \phi \gamma) \\ \hline B(b \to d \gamma) & A_{CP}(b \to d \gamma) & A_{CP}(b \to d \gamma) & A_{CP}(b \to d + s) \gamma & S(B^0 \to \rho^0 \gamma) \\ \hline B(b \to s I^+ I^-) & B(b \to d I^+ I^-) & A_{FB}(b \to s I^+ I^-) & B(b \to s \nu \bar{\nu}) \\ \hline B(B_s \to I^+ I^-) & B(B_d \to I^+ I^-) & B(B^+ \to I^+ \nu) \\ \hline \end{array}$$

- Maximize sensitivity by combining information
- Correlations between results to distinguish models
- Need very precise measurements
- Identify benchmark and "golden" (publicity) channels

B Physics: items discussed at workshop

- Some theoretically clean channels
 - Unitarity Triangle angles (α, β, γ)
 - Not discussed during the meeting, work required
 - Unitarity Triangle sides (Vub, Vcb)
 - Talks of Viaud, Gambino
 - How to reach 1-2% precision?
 - b→s γ (Walsh, Hurth)
 - b→sll (Renga Hurth)
 - b→sνν (Renga)
 - b \rightarrow τν(γ) (Bevan)
 - b→sll, b→l ν (Robertson)

Inclusive channels:

- need detailed study of sensitivity for realistic SuperB accelerator & detector
 - effect of hermeticity on recoil analyses
 - Important to work with tools group

Some modes not discussed in CDR

- Assess interest and feasibility of measurements at SuperB
- Interplay of Collider and Flavor Physics (highly relevant to the SuperB physics case). Emphasis on theoretical side for now
 - Tools HEP/Flavor interplay (Ronga)
 - SUSY breaking scenario (Shindou)
 - MFV + Snowmass points (Ciuchini + Silvestrini)

B Physics: V_{ub}

• Is 2% error on Vub feasible?

- Experimentally: yes (Viaud), but hard to evaluate precisely the SuperB factory's potential w/o a rigorous study (i.e. simulation, as accurate as possible)
 - Too many things to know, from many th. or exp. Sources, having a complicated behavior (w.r.t. the backgrounds, for example) to obtain reliable results otherwise...
- Theoretically: maybe (Gambino)
 - Very positive answer at this stage, need to discuss with other expert

B Physics: b→sγ

- Sensitivity to inclusive $B(b\rightarrow s\gamma)$ will be more likely limited by systematics (and theory error)
- Clean environment, hermiticity, vertexing and very high statistics give SuperB huge advantage for recoil analysis (hadronic tags)
 - Need detailed simulations to have precise estimates of improvements
 - Would allow reduction of photon energy cut
- Main source of theoretical uncertainty in B(b \to s γ) due to higher order corrections of O($\alpha_s \Lambda/m_b$)
 - Non-perturbative physics due to necessary cuts in the photon energy spectrum to suppress $B\overline{B}$ background
 - If this can be reduced, theory error could be 3% (Hurth) (or better with reduction of photon energy cut)

WG V – Tools for simulation

- The main goal is to setup tools to do fast (and full) simulation aimed to the preparation of the Technical Design Report of the SuperB project
- The tools should
 - simulate the SuperB environment reasonably well
 - generate very large samples of the main physics processes
- A working group was formed at the end of December.
- The meeting in Valencia was very useful to establish contact between tools and physics groups and plan the future activity

Tools: Interaction with subsystems and physics groups

- Good interaction with subsystems during the last month to understand
 - what are the needs for the optimization of the detector using a fast simulation
 - what is the best way to develop a more realistic simulation
- Interplay with physics groups has also started (example: use of $\tau+\tau$ generator in simulation)
- Regular meetings every second week

28

Tools: Plans

- very short term: provide the SuperB community with a working and well-documented fast simulation tool (PravdaMC)
 - to do optimization studies of the detector
 - to begin a few preliminary physics studies
- <u>short and medium term</u>: improve the fast simulation by both enhancing PravdaMC and exploring other solutions
- medium and long term: explore possible ways to integrate the fast simulation in the same framework of the full simulation (Geant4)

29

Conclusion

- Fruitful (and long) workshop, even if organized too quickly (with Xmas break in between)
 - Few presentations, lots of interesting discussions, time for attractions
 - It has been fundamental to prepare the report for IRC and P5
 - It has been a good opportunity to start and prepare the work on benchmark channels for TDR studies

• Tau WG

- LFV with SuperB is a clean and powerful probe for New Physics. tau $\rightarrow \mu \gamma$ is the golden channel, highly complementary with $\mu \rightarrow e \gamma$ from MEG
- CPV in tau decay and EDM can be measured precisely but only some specific NP models predict measurable effects
- SuperB can test whether SUSY is a viable explanation for muon g-2 discrepancy
- Polarization of the electron beam gives SuperB an additional advantage w.r.t.
 SuperKEKB, particularly for the tau EDM and g-2 measurement, possibly also LFV

Charm WG

- SuperB is "the" unique facility within the reach for New Physics from CPV in charm
- Mixing measurements will significantly improve results from previous experiments
- Running \sim 4 month at ψ ''(3770) will give access to 1% sensitivity on CPV in mixing and will prove unique tool for several other key measurements (e.g. 3-body decays)

Conclusion (cont)

- Spectroscopy WG
 - A branch of physics where there is evidence that something "new" is going on
 - A long way before the panorama is clarified
 - High statistics in clean environment is key to find/establish new states and discriminate between models (tetraquarks, hybrids, molecules,...)
 - Room for exotica searches (light Higss, Extra-dimensions, SUSY, dark matter)
 - Running <2 month at $\Psi(3S)$ would decuplicate the sample
 - Benefits from running at 4-5 GeV?
- B-Physics WG
 - A lot of activity at the workshop, on both theory and experimental sides
 - Quantitative comparison between SuperB and SuperKEKB in progress
 - Emphasis in qualitative differences
 - "Golden processes" as benchmark channels and publicity plots
- Tools WG
 - Started interplay with physics groups as well as some activities (e.g. tau generator)
- Working on the report:
 - material being collected and starting to edit the whole thing
 - First version will be available for P5 review the 20th Feb

