SuperB Drift Chamber: workshop summary

G. Finocchiaro INFN-LNF

on behalf of the SuperB-DCH group

Intro – Baseline design

Single cell drift chamber à la *BABAR* appears the most natural choice:

- result of a careful design optimization
- Performances in terms of momentum and dE/dx resolution have met design requirements

24 cm inner radius81 cm outer radius2.8 m length

IP 37 cm behind center

Be & Al inner cylinder
Carbon fiber/Nomex outer
2.5 (1.2) cm Al end plates
All electronics on rear

Small hex cells (1 \sim 2 cm)

10 superlayers of 4 layers each Axial and stereo ($\sim 4^{\circ}$)

96-256 cells/superlayer

Sense wires 20 μ m W-Rh (Au) Field wires 120 μ m Al (Au) Guard wires 80 μ m Al (Au)

Michael H. Kelsey

SuperR 2008

Michael H. Kelsey

The BABAR Drift Chamber - performances

Hit resolution: σ-2¼ m (target: 140μm)

Momentum: $\sigma(p_{T})/p_{T}=0.45\%+0.13\%p_{T}$ GeV/c

Tracking efficiency > 95% (fraction of tracks matched with STV) dE/dx resolution ~ 7.5%

So, why build a new chamber?

1.Despite the excellent aging performance of the BABAR DCH, it would not live 10-15 years more in the *BABAR* en-

vironment

		[mC/cm]	[%/(mC/cm)]
Experiment	Gas Mix	Charge	$\Delta G/G$ Aging
CDF	Ar:Eth:Alc	130	<1 ~ 20
(Run 2)	50:50:1		
ZEUS	Ar:Eth:CO ₂	100	$\lesssim 0.1$
	83:5:12		
H1	Ar:Eth:H ₂ O	< 10	$\gtrsim 1$
	50:50:0.1		
HERA-B	$Ar:CF_4:CO_2$	2300	\sim none
(test)	65:30:5		
BaBar	$He: i-C_4H_{10}:H_2O$	33.6	0.3
	80:20:0.4		
	-	•	

- 2. The SuperB environment will be tougher
 - Luminosity x 100
 - Backgrounds <u>probably</u> not 100 time worse than BABAR, but hardly predictable at this point

Required/desired/possible design improvements

1. Design a faster detector

- in BABAR ~500ns ionization collection time
- Faster gas mixture Smaller cells Both
- Gas mixture
 - Ideally, want a faster gas mixture with more primary clusters (smaller cells), but still light a with small Lorentz angle
- Smaller cells > more wires
 - make stringing more painful
 - increase load on end-plates
 - increase multiple scattering
 - use small cells only in innermost layers?
- Since we are at it: optimize cell packing?
 - A stereo-only structure would minimize dead space
 - more measurement points/unit length
 - consider implications on L1 trigger
 - Is it really worth?

Required/desired/possible design improvements (cont.)

- 2. Novel method: cluster counting see later
- 3. Make lighter mechanical structure minimize material in front of outer detectors see later
- 4. Review design of F.E. Electronics
 - must cope with increased rates
 - Keep to a minimum amount of material
 - presently rather massive design of the whole package (mainly e.m. shielding)
 - there might be room for substantial improvements
 - Use of current technologies on original BABAR design should already allow a substantial reduction of dissipated power and material budget

1. Design a faster detector

- Quantify how faster the collection time should be
 - Need detailed simulation of expected backgrounds
- Fast simulation to study detector performance vs.
 number of cells and spatial resolution
- Garfield simulations
- Prototypes with different cell shapes/sizes/gas mixtures
- External tracking telescope with sufficient resolution (≤ 100µm/point)
- Beam Test (BTF Frascati/other)

Garfield simulations

t_{min} and t_{90%} in various gas mixtures (standard BABAR cell)

KLOE prototypes

- In Frascati our group designed and built the KLOE DCH
 - largest drift chamber built to date!
 - 52k wires, all stereo square cell, 3:1field/sense wire ratio
- Built threes small prototypes to test the various layouts
- Built a precision tracking telescope
- Very good news is that we have been able to recover this equipment

The KLOE prototype

See "KLOE Central Drift Chamber – Addendum to the KLOE Technical Proposal", LNF 94-028 (IR), June 1994

Mechanical structure perfectly reusable – only need to drill new hole pattern on the end-plates, and restring

The KLOE "mini-trackers"

See: NIM A367, p154-158, 1995 Point resolution < 70 micron

<u>国</u> 1.6

1.575

σ vs drift distance

The KLOE "mini-trackers" - preliminary performances 2008

Only equipped with 3+3 electronics channel at the moment

The KLOE "mini-trackers" - preliminary performances 2008

2. Cluster Counting

Gabriele Chiodini - INFN-Le

- Poisson statistics from counting would allow substantially better PID performances than dE/dx with conventional truncated mean (3% vs 7% resolution)
- Use of all clusters (as opposed to only 1st one) in the time measurement would allow spatial resolutions O(50μm)
 - Would that be useful in SuperB (multiple scattering)?
- This method generates huge amount of data (2Gsample/s, 6-7bit)
 - feature extraction capabilities badly needed

Poisson ionization statistics of clusters

0. 666 600.

Landau ionization statistics of electrons

CLUCOU measurements: Setup

Drift tube ray = 1.4 cm

Wire diameter = 25 micron

Tube lenght = 30 cm

High Voltage = 1750 V

Amplifier Gain = 10

Amplifier BW = 500 MHz

14/2/2008

Clucou status

3. Drift chamber mechanical structure:

preliminary considerations

M.A. Franceschi T. Napolitano A. Saputi

INFN-LNF Servizio Sviluppo e Costruzione Rivelatori

3 options considered for the end-plates

- Flat
- Spherical
 - Reduce thickness
- Conical
 - Reduce occupancy in forward direction

For all options, the E.P.'s are only constrained at the OUTER radius

Disclaimer: what follows is **VERY** preliminary

Option(s) #1: flat CF end-plates

- 25mm thick CF sandwich of 2mmCF + 21mm honeycomb + 2mm CF • $\sim 0.015 X_0$, max deformation $\delta_{\text{max}} \sim 1$ mm
- 10mm thick CF sandwich of
 2mmCF + 6mm honeycomb + 2mm CF
 → ~0.015X₀, δ_{max}~7 mm
- 20mm thick CF
 - \rightarrow ~0.075 X_0 , δ_{max} ~1 mm
- 10mm thick CF
 - \rightarrow ~0.04 X_0 , δ_{max} ~6 mm

Option #2: spherical end-plates

Thickness O(4mm), or $0.015 X_0$ sagitta=200 mm $\rightarrow \delta_{\text{max}200} \leq 0.5$ mm sagitta=100 mm $\rightarrow \delta_{\text{max}100} \sim 2x\delta_{\text{max}200}$

Spherical EP concept proved in the KLOE DC

- $R_{\text{max}} \sim 2 \text{m}$
- 52,140 wires
- total load ~ 3.5 tons
- EP thickness 9 mm
- Plate deformations recovered with CF "stiffening ring"
 - Given the smaller radius of the SuperB DCH, we can probably avoid this complication

Option #3: conical end-plates

Expect high particle flux in forward direction. Conic-shaped EP's might help reducing occupancy in inner layers.

Thickness O(4mm), or $1.5\% X_0$ (perp. to walls) $\delta_{max} \sim 0.5$ mm

Option #3: conical end-plates (cont.)

- Besides the trickier structural analysis, conical end-plates would pose several problems though:
 - 1) drilling the holes at a very small angle
 - 2) ensuring a flat seat for the feed-throughs
 - 3) stringing the wires in the conical section
 - 4) a lot of material seen by electrons tangential to the cone \Rightarrow a lot of background produced
- None of the above (excluding 4), which needs careful investigation) looks unsurmountable, but we should be aware that conic end-plates are not exempt from issues.

Summary and outlook

- ★ Assuming the present BABAR DCH performances, and taking into account increase in occupancy foreseen in *SuperB*, we identified various areas of intervention and a tentative R&D program to meet the requirements.
- ★ To finalize this R&D program crucial information is missing:
 - What is the maximum expected background rate
- ★ Good progress in the procurement of the hardware necessary for the cell studies (tracking telescope + KLOE prototype)
- ★ Working hypothesis is to keep total thickness < e.g. PID system
- ★ Preliminary studies of the mechanical structure have been started by LNF engineers.
 - Conical/spherical Carbon Fiber end-plates seem feasible, with thickness O(few %X₀) and deformations < 1mm.
- Adjustments of length and position of DCH from interplay with other detector systems

