

Eugenio Paoloni for the Bkg. Sim. SuperB Dept. I.N.F.N. & Università di Pisa

What we did, how we did it, what we have to do and how we will do it

Machine Background: a primer

- Machine Background sources classified by scaling laws:
 - Luminosity: Radiative/Elastic Bhabhas, Pair Production
 - "Hardness of collision": beam-sstrahlung,
 Touschek, non gaussian beam tails
 - Current: beam gas interaction, synchrotron radiation from near bending

Luminosity Scaling

		Cross section	Evt/bunch xing	Rate	
	Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz	
	e ⁺ e ⁻ pair production	~7.3 mbarn	~15	7GHz	
	Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz	
	Y (4S)	O(10 ⁻⁶) mbarn	~2/million	I KHz	

Radiative (Inelastic) Bhabha

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma \quad (\gamma \sim || e^{-})$$
 e^{-}
 $\frac{p-m_{e}}{p^{2}-m_{e}^{2}}$
 e^{+}

- Quasi elastic Bhabha of the electron on the positron followed by the emission of a photon
- The virtual photon and the virtual electron are almost on mass shell:
 - the amplitude pinches the electron and photon propagators pole. Huge cross section.

Background production

Background remediation l

- Brute force: massive (2.7 Ton) tungsten shielding
 - Pro: reliable
 - Con: cost ~ 2 x 330.000€ (Plansee offer)

Background remediation II

- Drastic reduction of the linear and quadratic dispersion near the interaction point
 - Replacement of the shared quadrupoles QDo with two pairs of separate quadrupoles
 - Pro: clever
 - Con: very novel

Pair Production

- Generator: Diag36
- Affect SVT Layer o

Fig. 1. One of the sixteen bremsstrahlung graphs representing the leading t-channel d

Fig. 2. One of the eight Feynman diagrams for multiperipheral dynamics.

"Hardness of collision"

Non gaussian beam tails (Not simulated so far), should we? How?

Touscheck Background

- Particles in the same bunch can undergo
 Touscheck scattering and escape the ring energy acceptance window
- Off energy particles hit the storange ring material producing backgrounds
- Manuela Boscolo (LNF) developed a tool to simulate Touscheck scattering around the ring

Touscheck rate

Major source of concern during CDR finalization

Background remediation

Brand new set of machine parameters (Panta) and beam scrapers (M.Boscolo)

	CDR		New	
	LER	HER	LER	HER
Vert. emitt. (pmr)		4	7	4
Hor. emitt. (nmr)		2	2.8	1.6
particles/bunch 10 ¹⁰	6.16	3.52	5.	52
Touschek lifet. (min)	5.5	38	13.8	20.6

Geant 4 Simulation

 Giovanni Marchiori implemented the relevant part of the new final focus (the incoming and outcoming double QD0).

Layer	Old (kHz/cm2)	New (kHz/cm2)
0	23160	3.7
1	35800	7.0
2	29500	2.6
3	8000	4.9
4	885	0.0
5	510	0.0

Beam Current scaling

- Compton & Coulomb scattering among beam particles and residual gas in the vacuum chambers.
- For the CDR we just scaled by a factor close to 1 the BaBar backgrounds.

Software Framework

- Geant4 based program "SimSimpleApp" developed by Giovanni Marchiori, Giovanni Calderini
- QED generators (BBBREM + DIAG36),
 Touscheck generator(M.Boscolo) interface developed by E.P.
- Geant hits written on root files.

Software Framework II

- Geant hits digitization (i.e. conversion of the energy deposit information to "Electronic hit")
 - at runtime for SVT
 - off line on top of the Root-tuples for other sub detectors.
 - In both case very rough, sufficient for occupancy studies, not for digi mixing for the full simulation

Vetector geometry

- ▶ Buried in the C++ code:
 - hard to modify
 - hard to simulate a variety of detector configuration
- ▶ In the wish list: GDML/XML geometry description in an extern configuration file

CPR Petector Geometry

Questions for Pet.Exprt.

- Does the present root tree contains all the information you need?
 - What information is missing?
- Does you intend to implement a digitization algorithm?

Job organization

- At present is not trivial to compile and run the SimSimpleApp
 - CVS is "private" to SuperB afs slac group
 - Software environment: Geant libraries, root version, gcc flavour, linux distribution
 - Documentation
- We need:
 - A common software environment
 - An agile shared documentation (wiki?)

Job Organization II

- A dedicated task force to implement GDML/ XML detector construction
- Another dedicated task force should be devoted to the MAD to GDML conversion
- Detector contact persons should start learning GDML/XML to implement their subdetector

Job organization III

- Single beam background simulation still missing
 - We need a Turtle SimSimpleApp interface
- Space for 3 task forces (3 single man band?)

SVI

- We need to evaluate the radiation dose on the detectors and on the readout electronic
- Describe the geometry in a more flexible way: GDML/XML