Performance and Aging of the BaBar Drift Chamber

Michael H. Kelsey
Stanford Linear Accelerator Center

2008 Super B Factory Workshop, SLAC 14–16 February 2008

Outline

- Drift Chamber Design and Operation
- Aging and Wire Damage
- \bullet Tracking, dE/dx, and Physics
- Data Acquisition Upgrade
- Summary

BaBar Drift Chamber

24 cm inner radius

81 cm outer radius

2.8 m length

IP 37 cm behind center All electronics on rear

Be & Al inner cylinder

Carbon fiber/Nomex outer

2.5 (1.2) cm Al end plates

All electronics on rear

BaBar Drift Chamber

Small hex cells ($1\sim2$ cm)

10 superlayers of 4 layers each Axial and stereo (\sim 4 $^{\circ}$)

96-256 cells/superlayer

Sense wires 20 μ m W-Rh (Au) Field wires 120 μ m Al (Au) Guard wires 80 μ m Al (Au)

Construction

High-bay Class 1000 clean room at TRIUMF

Chamber volume enclosed in Class 100 clean tent

Measured at 10-20 particles/m³

No contact with wire in chamber or inner surfaces

Automated wire stringing

Operators attached wire from spool to steel rod

Pulled by robot (magnet grip) to opposite endplate

Feedthroughs, crimping outside clean tent

Michael H. Kelsev

Operating Parameters

Gas mixture 80% helium, 20% isobutane, 3500–4000 ppm water, \sim 80 ppm O_2

Designed to operate at 1960V

Initially operated without water vapor

Discharges observed in small region of chamber

Reduced to 1900V (October 1999–July 2000)

1930V January 2001-December 2006

1945V since January 2007

Michael H. Kelsev

Initial Damage

May 1999: 80:20, $O_2 < 10$ ppm, $H_2O \lesssim 100$ ppm

28 July 1999: Large spikes in HV current

October 1999: Turned off affected region, added water No discharges observed in chamber since

Gain vs. Time

Expect continuous decrease $G = G_0 \exp(-AQ)$ due to aging (charge accumulation)

Steps due to operating changes (voltage), transitions between runs (gas mix), etc.

Gain vs. Time

$$G(Q) = \{G_0 + \sum \Delta G_i|_{Q > Q_i}\} \exp(-AQ)$$

DCH Gain May 1999 - Feb 2008

Long-term Effects

Sudden damage always a concern, not observed

Transient discharges, voltage trips

Buildup of deposits on wires

Self-sustaining discharge (Malter effect)

Long-term studies of aging remediation

Lu Changguo (Princeton)

Pisa Frontier Detectors Meeting (2003)

Adam Boyarski (SLAC)

DESY Aging Workshop (2001)

IEEE NSS/MIC (2003)

Other groups (Colorado, Montreal, Novosibirsk, ...)

Accumulated several lifetime dose

Suppressing Damage

Running chamber without water vapor allows polymer (dielectric) buildup, increases likelihood of discharges

Presumed mechanism for damage seen in July 1999

Princeton test chamber run dry up to 130 mC/cm, saw discharges, high singles rate, 10% drop in gain

Adding 1500–4000 ppm H_2O eliminated discharges Gain stabilized at 0.9 of initial value, up to 300 mC/cm

Poor performance returned when water removed

Reconstruction Performance

Hit resolution $\langle \sigma({\rm resid}) \rangle \sim$ 125 $\mu{\rm m}$ Target: 140 $\mu{\rm m}$ in middle region of cell

Momentum
$$\sigma(p_T)/p_T = 0.45\% + 0.13\% \ p_T \ (\text{GeV}/c)$$

Target: 0.21% + 0.14% p_T

Tracking > 95% matching with SVT

dE/dx resolution \sim 7.5%, \pm (0.5-0.7)% bias Early test results: 7.0%

Physics Performance

Reconstruction of $K_S^0 \to \pi^+\pi^-$ at large radii

"Jumps" due to material scattering uncertainty and fewer hits per track fit

High Rate Data Acquisition

Modular, parallel electronics 4-buffer pipeline per channel 16 elements per quadrant via 1 GHz fiber to processor Original 1995 design

Readout time set by single element's occupancy

$$T_{DAQ} = 8\left\{8 + \sum_{i=1}^{N} (32m_i + 4)\right\} \times 16.7 + 33 \text{ ns}$$

N non-empty chips, $m_i = 1$ -8 wires (32 bytes) each

 \implies 45 hits requires 200 μ s (5 kHz)

High Rate Data Acquisition

Replace multiplexer with modern FPGA

Implement feature extraction in firmware

Charge (waveform) integration

Leading edge (hit time) finding

Pedestal subtraction

Calibration constants in FPGA memory

Data volume reduced 32 → 6 bytes/channel

Identical data format used for reconstruction

Essentially no deadtime up to 10 kHz trigger rate

Front-end Upgrade

New boards installed during Run 5 (Oct 2005)

Improved diagnostics, programmability vs. original

Firmware downloadable through FPGA to EPROM via normal DAQ path

"Pass-through" firmware (emulates original frontend) software selectable through DAQ command

Michael H. Kelsey SuperB 2008 SuperB 2008

Summary

BaBar Drift Chamber operated for nine years

Tracking performance up to design

dE/dx performance good

Excellent operational efficiency

No substatial problems after startup

Excellent aging rate 0.3% / (mC/cm)

Clean-room construction, comprehensive QA/QC procedures

Real-time monitoring of environment and data quality

Electronics upgraded to support luminosity

Supplemental Information

The PEP-II B Factory

Asymmetric e^+e^- collider: $E(e^+)=3.1$ GeV, $E(e^-)=9$ GeV \Rightarrow 10.58 GeV CMS: $\Upsilon(4S)\to B^+B^-, B^0\overline{B}{}^0$

B decay length increased from \sim 30 $\mu \rm m$ (CMS) to \sim 250 $\mu \rm m$ (lab), allowing precision time-dependent measurements

PEP-II delivers $\mathcal{L} > 10^{34} \ \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$ (3× design)

433 ${\rm fb}^{-1}$ at $\Upsilon(4S)$, \sim 9% off-peak

18 fb^{-1} at $\Upsilon(3S) \Longrightarrow$ 30 fb^{-1} plan

BaBar operates at > 95% efficiency

BaBar Detector

BaBar Drift Chamber

Main tracking detector in BaBar

Surrounds beam pipe, final focus magnets, and silicon vertex tracker

Construction QA/QC

Continuous QA/QC monitoring

Tension measured during stringing

Before and after crimping

Daily evaluation of wires and feedthroughs

Replacement done during subsequent shift

Stringing completed in 3 months (Aug-Nov 1997)

Just 19 of 28,768 wires outside specification

Tension, crimps, continuity

Assembly fixture repositioned vertically

Wires removed and restrung in situ

Commissioning

Tested at voltage with operating gas

Mixed in radioisotope (133 Xe)

Pulses, singles rates measured for all 7,104 cells

Shipped fully operational, ready for comissioning

Commissioned at SLAC with production DAQ system before installation in IR-2

Accumulated Charge

Measure aging vs. accumulated charge per unit wire length

400–600 μ A w/beams (0.25 nA/cm)

Recorded every second

Total charge 33.7 mC/cm in nine years

Michael H. Kelsey

Quantifying Gain

Normalize to absorb environmental effects

Pressure and temperature ⇒ density

Detailed gas mixture (He:i-C₄H₁₀, H₂O, O₂)

Precise operating voltage

Compute dE/dx for tracks from Bhabha-scattering events $[e^+e^- \rightarrow e^+e^-(\gamma)]$

Relativistic plateau of Bethe-Bloch curve, fixed average value

Normalization done \sim hourly

Gain vs. Time Fit Details

$$G(Q) = \{G_0 + \sum \Delta G_i|_{Q > Q_i}\} \exp(-AQ)$$

$$\chi^2/\text{dof} = 1789.58 / 418$$

$$-A(\%) = -0.337 \pm 0.006$$

$$G_0 = 0.974 \pm 0.001$$

$$\Delta G_1 = -0.430 \pm 0.001 \quad (Q_1 = 0.3)$$

$$\Delta G_2 = 0.430 \pm 0.001 \quad (Q_2 = 1.2)$$

$$\Delta G_3 = -0.280 \pm 0.001 \quad (Q_3 = 2.8)$$

$$\Delta G_4 = 0.047 \pm 0.001 \quad (Q_4 = 4.4)$$

$$\Delta G_5 = -0.046 \pm 0.001 \quad (Q_5 = 8.7)$$

$$\Delta G_6 = 0.042 \pm 0.001 \quad (Q_6 = 19.0)$$

$$\Delta G_7 = 0.026 \pm 0.001 \quad (Q_7 = 20.8)$$

$$\Delta G_8 = -0.037 \pm 0.001 \quad (Q_8 = 22.4)$$

$$\Delta G_9 = 0.084 \pm 0.001 \quad (Q_9 = 26.5)$$

$$\Delta G_{10} = -0.064 \pm 0.001 \quad (Q_{10} = 32.5)$$

Other Chambers' Aging

		[mC/cm]	[%/(mC/cm)]
Experiment	Gas Mix	Charge	$\Delta G/G$ Aging
CDF	Ar:Eth:Alc	130	<1 ~ 20
(Run 2)	50:50:1		
ZEUS	Ar:Eth:CO ₂	100	$\lesssim 0.1$
	83:5:12		
H1	Ar:Eth:H ₂ O	< 10	$\gtrsim 1$
	50:50:0.1		
HERA-B	$Ar:CF_4:CO_2$	2300	\sim none
(test)	65:30:5		
BaBar	$He:i-C_4H_{10}:H_2O$	33.6	0.3
	80:20:0.4		

From 2001 DESY Workshop presentations

Suppressing Damage

Lu Changguo, Princeton

Suppressing Damage

Lu Changguo, Princeton

Remediating Damage

Excess current can trigger self-sustaining discharges Maximum safe current significantly reduced over time

Adam Boyarski, SLAC

"Training" with oxygen (500 ppm) gradually raises current limit to original construction. Maintained after O_2 removed.

Further study underway to confirm long-term performance

Remediating Damage

Additives (alcohol, water, oxygen) can suppress discharges, allow running at higher currents

		Before	With Additive		After	
Additive	(%)	I_{max}	Time (hr)	I_{max}	I_{max}	Cured?
Methylal	4	0.3	≈0	>8		No
	2			3	0.4	No
2-Propanol	1.0	≈0.5	≈0	>12		No
	0.5			>10		No
	0.25			>13	0.2	No
H_2O	0.35	0.4	≈0	>27		No
	0.18			>9	0.5	No
O_2	0.10	0.5	1.5	>32	>40	Yes
	0.05	0.4	2	>29	>16	Yes
	0.02	0.9	10	>35	>14	Yes
CO_2	5	0.4	35	>40	>27	Yes
O_2+H_2O		0.4	40	10	3	Partly
(0.05+0.35)						

Adam Boyarski, SLAC

Temporary 500–1000 ppm O_2 running appears to "cure" discharge problem. Current limit restored to initial level.

Track Fitting

Residuals of hits vs. distance from wire

$$\langle \sigma({\rm resid}) \rangle \sim$$
 125 $\mu{\rm m}$

Design target: 140 μ m in middle region of cell

d(t): pair of 7th order Chebyshev functions, each side of cell, corrected for angle and position in cell.

Track Fitting

Momentum resolution from cosmic rays

$$\sigma(p_T)/p_T = 0.45\% + 0.13\% p_T \text{ (GeV/}c)$$

Design target: 0.21% + 0.14% p_T

Tracking Efficiency

"Pseudo-efficiency"

Count DCH+SVT tracks vs. total SVT tracks

Measure acceptance in momentum or p_T polar angle azimuth (not shown)

DCH and SVT not independent

dE/dx, Particle ID

Good π/K separation up to \sim 700 MeV/c

Confirms results in DIRC region, adds PID coverage outside DIRC acceptance

Physics Performance (II)

$$B \to D^{(*)}D^{(*)}, D^{*+} \to \pi^+ D^0, D^0 \to K^- \pi^+$$
 (Monte Carlo generated events)

Momentum
$$\sigma(p)/p = 4.7 \times 10^{-3}$$

$$D^0 \rightarrow K^- \pi^+ \sigma (\text{mass})$$
 6.5 ± 0.2 MeV/ c^2

$$D^* \rightarrow \pi^+ D^0 \ \sigma(\text{mass}) \quad 0.80 \pm 0.03 \ \text{MeV}/c^2$$

High Rate Data Acquisition

Readout time scales with HV current, luminosity (uniform occupancy)

M. Cristinziani, 2004

C. Jessop, 2004

Readout \sim trigger rate \Longrightarrow **non-linear** deadtime