Trigger, DAQ, & Online Planning and R&D needs

Super B Factory R&D Workshop 2008.2.14 S. Luitz and G. P. Dubois-Felsmann

Outline

- Design Principles
- Rate and Event Size Estimates
- FCTS and Data Flow
- Event Builder and Level-3 Trigger Farm
- Logging and Data Quality Monitoring
- Control Systems & Logbook
- Configuration Management
- Hardware Reuse, Cost and Labor Estimates
- R&D Projects
- Summary

Design Principles

- Open trigger
 - Just like BaBar
 - Recoil and rare-decay physics essentially demand this: the critical physics signatures are not distinctive at trigger level
- Commodity hardware (wherever possible)
- Uniform design across subsystems

Open Trigger?

- Yes: today's commodity hardware in can already handle event building and Level 3 at the resulting rates
 - Some concrete estimates below assume 2009 technologies at today's prices...
- The challenge: Level 1 rates and the corresponding front-end electronics
 - We need your help to define the requirements!

Rate and Event Size Estimates/Assumptions

- Event size
 - BaBar: ca. 35kByte average
 - SuperB: educated guess based on BaBar: 75kByte average
 - Possibly smaller cells in DCH
 - More samples needed to detect pile-up and overlapping events
 - Higher occupancy due to background events
 - But you need to define this (this week?)!

Rate and Event Size Estimates/Assumptions II

- Trigger Rates –BaBar Open Trigger Philosophy
 - L1-Accept (dominated by e⁺e⁻ interactions)
 - From BaBar:
 - ~20nb (BaBar physics filter output) → 20kHz @ 1e36
 - ~50nb Bhabhas (BaBar acceptance) → 50kHz @ 1e36
 - 10% scaled backgrounds of BaBar → ~25kHz
 - Operational BaBar experience: 50% headroom desirable
 - Would require L1 and Front End DAQ to handle 150kHz L1-Accept rate
 - Bhabha veto could bring down L1-A rate (with headroom) to ca. 100kHz
 - Assume Bhabha veto for now
 - L3-Accept
 - Assume ~20nb + ~5nb for monitoring triggers → 25kHz @ 1e36
 L3 accept rate
 - Moderately optimistic extrapolation from BaBar

CDR DAQ / Online design

Heavily based on the existing BaBar system

Nice:

- Build on the BaBar success
- BaBar is the source of the most reliable performance and effort data available to us
- Not a radically new design, we think we understand most issues

But keep in mind:

- The design parameters are fairly challenging for an HEP DAQ system - particularly for the front-end electronics
- There may be other ways to build such a system (e.g. with LHCstyle technology)
- Not a radically new design, we think we understand most of the issues but there may be some unforeseen surprises

Looks like BaBar, doesn't it?

Super B R&D Workshop

S. Luitz and G.P. Dubois-Felsmann

Trigger

- BaBar-like trigger structure:
 - I evel-1
 - Pre-event-readout trigger based on drift chamber and calorimeter information
 - Level-1-Accept initiates event readout
 - Level-2 (optional)
 - Trigger in data path acting on partial event information
 - Currently not foreseen (event sizes are small!)
 - Level-3
 - Software trigger running on server farm, acts on complete events.
 - Refines Level-1 calculations, allows more complex operations
 - I evel-4
 - "Offline" filter may need to place upstream of permanent storage!

CDR DAQ and Fast Control and Timing System

- Design based on a modular DAQ system currently developed at SLAC (for other programs!)
 - FPGA/System-On-A-Chip
 - PPC general-purpose CPUs
 - VHDL-style "DSPs"
 - Various link options, including 10GigE and 2.5GBit/s fiberoptic serial links
- Similar to BaBar, but faster fiber links to front-end electronics (2.5GBit/s)
- Feature extraction as close to front-ends as possible
 - Proof-of-concept in revised BaBar DCH electronics

Fast Control and Timing system (trigger distribution and flow control)

- "No" mandatory dead-time between triggers allowed
 - Frontend readouts that can "keep up" with a (very short) minimal allowed command spacing OR
 - Trigger queuing and fully addressable front end readout buffers

Event Build and Level-3 Trigger Farm

- BaBar-style network event builder and Level-3 farm
 - 10GigE outputs of DAQ modules are fed into a commodity network switch
 - Event contributions are sent to Level-3 trigger farm nodes
 - Farm nodes connected to the switch by 1GigE
 - Take advantage of cheap (and possibly long) copper links. Copper 10GigE is limited to a few meters.
 - Use lightweight UDP/IP protocol with simple retransmit
 - Most of UDP protocol done by NIC
 - 100kHz x 75kByte \rightarrow 7.5GByte/s or 60 GBit/s
 - Can be handled by current generation of network switches
 - The BaBar Cisco 6500-720 switch could handle this rate
 - Will require at least 120 farm nodes for networking reasons
 - Can't utilize 1GigE links more than 50% (or buffering is ineffective)
 - 8 CPU cores per node would allow ~5ms / event / CPU
 - Level-3 output rate: 25kHz → 210 Hz per node

DAQ Module

 Modular DAQ system design currently developed at SLAC for LSST, PetaCache, LCLS and other projects

Logging

- Log to RAID-1 (mirrored) disks local to farm nodes, 2-4TByte/node
- 16MByte/s (210Hz x 75kByte) logging rate per node
- Send data from farm nodes to archival storage and further processing
 - Possible Level-4 before archival storage
- Total I/O requirement per node: 16MByte/s write, 2 x 16MByte/s read
 - Within reach of current disks
- Each farm node holds part of a run ("Runlet")
 - Runlets expected to be preserved, probably no further merging
 - Bookkeeping system will need to deal with this

Data quality monitoring

- BaBar experience seems satisfactory
- Foresee additional farm of ca. 40 machines to run fast online data quality monitoring
- Alternatively data quality monitoring application could run on the L3 farm (e.g. using low-overhead resource-isolation technology).
- Histogram collection via DHP-like distributed histogramming mechanism
- GUI/Web based display
 - Design this early in collaboration with detector systems!

Control Systems & Logbook

- Experiment ("Run") Control
 - Operator interface for DAQ
 - Sequences DAQ configuration, calibration, partitioning, etc.
 - Automate operations as much as possible
- Detector ("Slow") Control
 - Control detector and detector support systems
 - Monitor and record detector and environment conditions
 - Based on toolkit that provides interface to hardware
 - BaBar uses EPICS
 - Depending on hardware, a different system may be more appropriate
 - Should share a timebase with the FCTS (the event stream)
- Unified operator interface / GUI
- Electronic Logbook
 - Integrated with Experiment and Detector Control

Configuration Management & Release Control

- All hardware and software configurations defined in configuration database
- Software release management and tracking
 - What was running where at any given time in any part of the DAQ and Online system
 - With more "traditional software functionality" implemented in FPGAs, FPGA firmware is considered "software" and must be included in the configuration and release management scheme

Hardware Re-usability & Cost Estimates

- Most BaBar Online system hardware not reusable for Super B factory:
 - DAQ and Trigger for obvious reasons
 - Computing & Networking
 - Need to take advantage of Moore's Law
 - Useful life of commodity computing 3-4 years
- Basis for online computing cost estimate
 - BaBar experience with 2 upgrades shows:
 - "Boxes don't get cheaper, they get faster"
 - "A farm node always costs \$3k, now it has 8 cores"

Software Re-use?

- Concerns about re-using online software:
 - Tied to hardware
 - May be sub-optimal
 - As recent optimizations of feature extraction codes have shown
 - Very specific optimizations for BaBar operations
 - E.g. detector controls
 - In-depth expertise may no longer be available
 - Different expertise and tools available in LHC era
 - Documentation sub-optimal or non-existentConcepts and frameworks can (and should) be re-used
 - A lot of code will need to be written from scratch anyway

Labor Estimates

- 80-90 FTE-years (based on BaBar effort estimates)
- Given the challenges, we estimate the Super B
 Factory effort to be comparable to the initial BaBar
 online computing effort
- Apply lessons learned to development model
 - E.g. feature extraction code to be developed by "professionals"
 - More core effort for e.g. the slow controls system to avoid the "3 different drivers for the same hardware" syndrome

R&D Projects – further study

- Detailed evaluation of channel counts, and per-channel DAQ requirements
- Study backgrounds and occupancies and their effect on event sizes

R&D Projects – further study II

- Study attainable performance of a Level 1 Bhabha veto
- Assess cost of extending L1-Accept capacity to 150kHz
 - Headroom, no Bhabha veto, later lumi upgrades
- Investigate consequences of overlapping events, triggers and trigger queuing
- Queue modeling for data path to determine buffering requirements

R&D Projects – further study III

- Study adaptation of the current "Level-4" BaBar physics filter to Level-3 quantities
- Review LHC technologies for applicability:
 - Look at control system alternatives to EPICS
 - Concrete experience with ~100kHz DAQ (though expensive)

Summary

- "BaBar++" design of Online and DAQ seems feasible for Super B Factory
 - Front-end DAQ is major challenge and needs prompt R&D attention
 - Need a Level 1 trigger R&D effort integrated with tracking, EMC
 - More R&D in many other areas needed for more detailed design
- Hardware re-use very limited
- Software re-use needs careful consideration
 - In many cases a redesign with lessons learned probably the better approach
- All challenges can (probably) be solved with technology already available today – costs will continue to decline