SuperB Detector R&D Workshop SLAC 14-16 Feb 2008

Planning for SuperIFR simulation

Mirco Andreotti, Gigi Cibinetto, Mauro Munerato, M.R.

SuperIFR simulation

- •People involved:
 - Andreotti, Cibinetto, Munerato, Negrini (Ferrara)
 - Rotondo (Padova)
- Contact people: Andreotti, Rotondo
- Ongoing activities: just started
- Optimization of the detector geometry
- Interact with the background experts
 - upgrade the present IFR geometry
- Fast simulation
- Start to think about a full simulation

Detector Optimization

Baseline

- Add iron to BaBar stack to improve μ ID.
 - → 7-8 detection layers.
- Re-use BaBar steel (still to be fully assessed)
- •Keep longitudinal segmentation in front of stack to retain K_L ID capability.
- Backgrounds are problematic for gas detectors.
 - →Use Minos style scintillation bars.

- Studies on the simulation and background evaluation need to be performed soon:
 - Time resolution and spatial segmentation (ϕ -z segmentation)
 - Configuration of active layers and absorbers (transverse segmentation)

Detector Optimization

For these studies it is **desirable to use a full simulation** in order to have a detailed simulation of the hadronic showers

Use the BaBar framework gives many advantages:

- → we need reconstructed information from other detectors: for ex. swimmer from DCH
- → In terms of interaction length, all detectors inside the BaBar IFR are not so different from the CDR SuperB configuration

Effect of the background

Simulated machine background available from a Geant4 standalone simulation (Calderini, Marchiori)

We have root files with hit information

Extract the spatial distribution of the rates due to the background

The parameterized rate will be inserted like a noise in the BaBar MC reconstruction

Evaluation of background effects in terms of inefficiency in the

- swimming of tracks from DCH
- clusters reconstruction

Background <-> Simulation

- Bacgkround simulation side
 - Improve the IFR geometry description: now simple G4Tubes
 - Try different geometries (segmentation)
 - Many advantages moving to a description based on GDML

- BaBar simulation of SuperB side
 - Detector optimization
 - Effect of different geometries/resolutions

Many iterations between IFR people and Background people could be needed

Fast Simulation

PravdaMC: the DIRC and the IFR are not described

 At present: the overall PID efficiency/mis-ID is given using the BaBar PID tables (ASCII files)

SLAC 14-16 F

Selector: NNTightMuonSelection

Order 0:

- Redo the tables with reasonable guess on the mis-ID and efficiency
- Use the estimated inefficiency (parameterized in P, θ, φ) obtained from the detector optimization studies
- (equalize the FWD and the BWD parts)

 $\theta[Deg]$

Dataset: run6-r22a

 $\theta[Deg]$

Tables created on 23/6/2007 (Data)

Fast Simulation

Order 1:

- A parameterized output can be easily provided in Pravda, using the existing reconstructed output from BaBar IFR reconstruction, for example:
 - N-Interaction lenghts
 - hit multiplicity x layer
- Run the (almost)standard muon selector on these quantity

- Advantages: implicitly these PDFs parameterize the hadron showers;
- These PDFs need to be changed according to the full simulation or using reasonable guesses;
- The effect of the background can be propagated to these PDFs according to the detector optimization studies

Preliminary conclusions

- For the detector optimization and the evaluation of the background effects we will take advatage of the existing BaBar full simulation
- To implement a reliable Fast Simulation a detailed parameterization of the hadronic showers and the inefficiency due to the background is:
 - important for μ/π separation, and crucial for the K_L identification
- The inefficiency due to the bkg, parameterized as a function of (P, θ, ϕ) , can be used in a Fast Simulation (PravdaMC Stile)
- The IFR fast simulation with Pravda can be done at different level of details