Extruded scintillators R&D

F. Bellini, G. Cavoto, R.Faccini, S. Morganti, F. Orio, G. Piredda, C. Voena
University of Rome & INFN Rome
(Cuore + SuperB)

Requirements (SuperB/Cuore synergies)

- SuperB
- 11000 strips 3.7m x 5cm → ~2000m²
- 2D position measurement (σ~10cm?)
- Low cost
- Mechanical constraints for non-zcoordinate bars

- Cuore
- 9x1.5m² panels (octagonal shield)
- 3 layers 5x5 m

Total: 130-280 m²

- Very high efficiency
- Mechanical constraints (moving shield). Avoid long light guides
- Positioning? Optional

Rome commitments

- Light yield with different optical fibers
- Light yield with different extrusion geometries/grooves disposition
- Light yield with different glues
- Readout tests (including optical/mechanical coupling studies)
 - PM(study behaviour in B field)
 - Low voltage option
 - multichannel
 - APD → Discarded
 - SiPM/MPCC(geiger;griglia da 1600/mm2;σ(t)=220ps→8cm); costo 800\$/canale
- Alternative geometries
 - Improved efficiency/reduced noise
 - Improved resolutions
 - Efficiency uniformity

R&D status

Already in Rome:

Scintillators:

- 1 Minos (ITASCA 2m)
- 1 Rectangle with internal fiber
- 1 JLAB (1m with three fibers)
- Saint Gobain BCF-92 fibers from Ferrara (Ø 1mm)
- Will be testing also the Opera ones [same geometry as minos, but made in Ucraina, 7.5€kg]

Detectors:

- **2** Low voltage compact PMT 300€channel (?)
- 2 MPPC from Hamamatsu 50€channel+stabilizer
- Multichannel (x64) PMT 30€channel
- Waiting for SiPM
- **■**Test stand: motorized biaxal table for scan
- **■**Two test sources set up:
 - 1974 Cs source with a 10 muCi activity (v~800Hz)
 - Two 1.5cm scintillators (area of the smallest 10x5 cm²) → cosmic rate ~1.5Hz

Pros	Cons
Compact (integrated into detector→ Cuore)	Extremely delicate tuning of input voltages
	Interplay between control voltage and bias
Bfield resistent? To be tested	
"HV"=11-15 V	

Characterization

- Done with cosmics on scintillator (1cm thick plastic scintillator, 5x5 cm)
 - HV=14V, Vctrl \sim 0.95V \rightarrow G \sim 10⁶
 - Signal ~15mV
 - Noise ~ 0.2 Hz with 8.8mV threshold

- Test on extruded scintillator (2x2 cm with hole in the middle) with :
 - Optical coupling done, ready to look for the signal ————

MPPC

Pros	Cons
High sensitivity	Requires voltage stabilization:
	* How accurate do we need the gain to be, can we tolerate 10% instabilities?
Bfield resistent	Delicate photocathode
Compact	

Characterization

- Standalone signal has reasonable size (100 mV/p.e.)
 - but extremely high rate (40KHz @0.5 p.e., 4KHz@2p.e.)
 - And extremely low eff (done with diode half way the fiber)[0 suppressed plot]
- Coupling with extruded scintillators done, but no significant signal yet

Plans

- Understand MPPC efficiency and noise
- Understand extruded scintillator with compact PM
- Characterize multiple PM
- Longitudinal coordinate measurement with TDCs
- Optimization of mechanical couplings (both Cuore and SuperB)
- Behaviour in B field (2T magnet available)
- Choice among extrusions and investigation of variations

BACKUP

Sources and electronics

- Two test sources set up:
 - 1974 Cs source with a 10 muCi activity (v~800Hz)
 - Two 1.5cm scintillators (area of the smallest 10x5 cm²)→ cosmic rate ~1.5Hz
- DAQ system:
 - Comparators and coincidences for the cosmic trigger
 - Amplifier for the compact PM output
 - Scaler
 - ADC [specs?]
 - TDC [specs?]
 - PC interface

