

General overview

G. Cibinetto - INFN & Universita' di Ferrara

SuperB Detector R&D Workshop SLAC Feb 14-16, 2008

Outline

- The IFR concept
- The scintillator choice for super B
- The scintillators
- The WLS fibers
- The photon detectors

The IFR for super B

- The muon and K_L detector is build in the magnet flux return.
- In BaBar it's composed by one hexagonal barrel and 2 endcaps
- The iron is instrumented with LSTs in the barrel and with RPCs in the endcaps.
 - 16 RPCs active layers
 - 12 LSTs active layers
- RPC belt chambers have been added to the forward endcap to improve the coverage.

IFR requirements for super B

- Add iron to BaBar stack to improve μ ID:
 - → 7-8 detection layers.
- Re-use BaBar steel (still to be fully assessed)
- Keep longitudinal segmentation in front of stack to retain K_L ID capability.
- Backgrounds are problematic for gas detectors.
 - → Use Minos style scintillation bars.

The Minos style IFR

- This technology has been proposed as replacement of the BaBar barrel.
- One coordinate will be measured by the bar position.
- The other coordinate by measuring the time at both end of the bar.
- Need input from simulation and background evaluation.
 - Time resolution and spatial segmentation
 - Number and location of active layers.
 - Where to add iron if needed
- Need full simulation of the detector, reconstruction code and muon selectors. Not available for super B: reuse BaBar framework.

From CDR: Minos style layout

The super B style IFR

- Some of the questions that we are trying to answer"
 - Number of fibers per scintillation bar: may be only one or two.
 - WLS fiber diameter (1 mm), shape decay time, ...
 - Use Geiger Mode APDs instead of APDs?
 - What is the best mechanical design
 - What electronics
 - Read one or two side of the scintillator

The scintillator bars

In contact with FNAL-NICADD facility

Various candidates:

- We have some spares from Minos and Itasca company that we are using for R&D
- In a second stage of the R&D we'll have to make our own prototype.

The WLS fibers

- Baseline: Kuraray Y11-175 Φ=1.0 mm, round, double cladding
 - Trapping efficiency = 5.4%
 - Attenuation Length ~ 3.5m
 - Emission peak: 476 nm

Possible alternatives:

- Different diameter/dopant concentration: increase the light yield
- Square shape: higher trapping efficiency (~+30%)
- Bicron BCF-92 fibers (round multiclad):
 - Trapping efficiency = 5.6%
 - Attenuation Length ~ 3.5m
 - Emission peak: 492 nm
 - Decay time: <u>2.7 ns</u> (Y11-200 is ≈10ns), faster → better time resolution

Fiber readout

APD:

- For BaBar R&D was considered the model RMD #S0223:
 - G>1000
 - QE=65% (>530 nm)
 - 5ns risetime
 - High bias voltage (1850V) → difficult to stabilize
 - G very sensitive to <u>V and T variations</u>
- Hamamatsu APDs have lower gain (few 100), bias voltage 400- 500 V
- Geiger mode APDs: MPPC (Hamamatsu), SiPM (FBK- IRST)
 - G > 10⁵
 - DE \approx 40% (530nm) (DE = Q.E x Fill factor x Aval. prob.)
 - ~ 1ns risetime
 - ≈ 10 times less sensitive to V and T variations
 - Low bias voltage (50-70V)
 - Dark current rate @ room temperature : \[100s of kHz thr = 0.5 phe \] few kHz if thr = 1.5 phe

$$\begin{cases} \frac{\Delta G}{G} = 7 \cdot \frac{\Delta V}{V} \\ \frac{\Delta G}{\Delta G} = 4 \cdot \frac{\Delta T}{V} \end{cases}$$

Conclusions

to be continued...