Connecting low-lying dipole modes to nuclear structure and equation of state

7th International Conference on Collective Motion in Nuclei under Extreme Conditions (COMEX7)

Dipartimento di Fisica e Astronomia

Catania, June 11th - 16th, 2023

Authors: S. Burrello, M. Colonna

INFN - Laboratori Nazionali del Sud

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

Outline of the presentation

Theoretical approaches for nuclear many-body problem

- Ab-initio vs phenomenological models based on energy density functionals (EDF)
- Effective interaction and nuclear matter (NM) Equation of State (EoS)

2 EDF-based models: recent results and further developments

- Mean-field dynamical models with phenomenological EDFs
 - Nature of low-lying dipole modes and connection with nuclear structure
 - Correlation between low-lying dipole excitations and properties of EoS
- Extensions of EDF approaches: bridge with ab-initio and beyond mean-field
 - Benchmark ab-initio for low-density pure neutron matter (PNM)
 - Embedding many-body correlations and clustering phenomena

Summary and perspectives

→ 3 → 4 3

Outline of the presentation

Theoretical approaches for nuclear many-body problem

- Ab-initio vs phenomenological models based on energy density functionals (EDF)
- Effective interaction and nuclear matter (NM) Equation of State (EoS)

EDF-based models: recent results and further developments

🗢 Mean-field dynamical models with phenomenological EDFa

\gg . Extensions of EDE approaches, bridge with ab-initio and beyond mean-field

Summary and perspectives

Theoretical approaches for many-body problem

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 - \Rightarrow Diagrammatic hierarchy (power counting)

()

周 ト イ ヨ ト イ ヨ

Phenomenological models with effective interaction
 Contraction mean-field (MF) approximation
 Fit of parameters to reproduce various does

- Energy Density Functional (EDF) theory
- Ongoing attempts to bridge EDFs with ab-initio

Theoretical approaches for many-body problem

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 - \Rightarrow Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data

• Energy Density Functional (EDF) theory

Ongoing attempts to bridge EDFs with ab-initio

Theoretical approaches for many-body problem

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 - ⇒ Diagrammatic hierarchy (**power counting**)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data
- Energy Density Functional (EDF) theory

$$\mathsf{E} = raket{\Psi} \hat{\mathcal{H}}_{\mathsf{eff}}(
ho) \ket{\Psi} = \int \mathcal{E}(\mathsf{r}) d\mathsf{r} \xrightarrow[\mathsf{eq.}]{} \mathsf{EoS}$$

イロト イポト イラト イラト

 $|\Psi
angle \equiv$ independent many-particle state

Ongoing attempts to bridge EDFs with ab-initio

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

Theoretical approaches for many-body problem

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 ⇒ Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data
- Energy Density Functional (EDF) theory

$$E = \langle \Psi | \, \hat{\mathcal{H}}_{\mathsf{eff}}(
ho) \, | \Psi
angle = \int \mathcal{E}(\mathsf{r}) d\mathsf{r} \xrightarrow[\mathsf{eq.}]{} \mathsf{EoS}$$

 $|\Psi
angle \equiv$ independent many-particle state

- \Rightarrow Description of ground state and excitations
- Ongoing attempts to bridge EDFs with ab-initic

< ロ > < 同 > < 三 > < 三 >

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

Theoretical approaches for many-body problem

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 ⇒ Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data
- Energy Density Functional (EDF) theory

$$E = \langle \Psi | \, \hat{\mathcal{H}}_{\mathsf{eff}}(
ho) \, | \Psi
angle = \int \mathcal{E}(\mathsf{r}) d\mathsf{r} \xrightarrow[\mathsf{eq.}]{} \mathsf{EoS}$$

 $|\Psi
angle \equiv$ independent many-particle state

- \Rightarrow Description of ground state and excitations
- Ongoing attempts to bridge EDFs with ab-initio

くロト く得ト くヨト くヨト

Recent attempts to bridge EFT with EDF theories

	Physics Letters B 811 (2020) 135938	
	Contents lists available at ScienceDirect	Perfects LETTERS II
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	
Towards a power counting in nuclear energy-density-functional theories through a perturbative analysis		
Stefano Burrel	lo ^{a,*} , Marcella Grasso ^a , Chieh-Jen Yang ^b	
^a Université Paris-Saclay. ^b Department of Physics,	CNRS/IN2P3. IJCLab. 91405 Orsay. France Chaimers University of Technology, SE-412 96, Güteborg, Sweden	

PHYSICAL REVIEW C 106, L011305 (2022)		
Letter	1	
Calculations fo	theories through interactions guided by effective field theory	
	C. J. Yang ^o , ^{1,2} W. G. Jiang ^o , ¹ S. Burrello ^o , ³ and M. Grasso ^o ⁴	
	¹ Department of Physics, Chalmers University of Technology, SE-412.96 Göteborg, Sweden	
	² Nuclear Physics Institute of the Czech Academy of Sciences, 25069 Řež, Czech Republic	
	² Nuclear Physics Institute of the Czech Academy of Sciences, 25069 Rez, Czech Republic ³ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany	
	² Nuclear Physics Institute of the Czech Academy of Sciences, 2009 Ref. Czech Republic ³ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ⁴ Universite Paris-Saclary, CNRS/IN2P3, IICLab, 91403 Orsay, France	

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

< ロ > < 同 > < 回 > < 回 > < 回 > <

Collective excitations: neutron skin and EoS

- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR
 - Pygmy Dipole Resonance (PDR)
- Isovector terms of effective interaction

 \Rightarrow symmetry energy in EoS $\left(\delta\equivrac{
ho_{n}ho_{p}}{
ho}
ight)$

Collective excitations: neutron skin and EoS

- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR
- Isovector terms of effective interaction

 \Rightarrow symmetry energy in EoS $\left(\delta \equiv \frac{\rho_n - \rho_p}{\rho}\right)$

伺 ト イヨト イヨト

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

Collective excitations: neutron skin and EoS

- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR)
- Isovector terms of effective interaction

 \Rightarrow symmetry energy in EoS $\left(\delta \equiv \frac{\rho_n - \rho_p}{\rho}\right)$

伺 ト イヨト イヨト

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

Collective excitations: neutron skin and EoS

- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR)
- Isovector terms of effective interaction

$$\Rightarrow$$
 symmetry energy in EoS $\left(\delta \equiv \frac{\rho_n - \rho_p}{\rho}\right)$

$$\frac{E}{A}(\rho,\delta)\approx\frac{E}{A}(\rho,\delta=0)+\mathsf{S}(\rho)\delta^2$$

- - E + - E +

Collective excitations: neutron skin and EoS

- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR)
- Isovector terms of effective interaction

$$\Rightarrow$$
 symmetry energy in EoS $\left(\delta \equiv \frac{\rho_n - \rho_p}{\rho}\right)$

$$\frac{E}{A}(\rho,\delta)\approx\frac{E}{A}(\rho,\delta=0)+\mathsf{S}(\rho)\delta^{2}$$

★ 문 ► ★ 문 ►

[X. Roca-Maza et al., PRL 106 (2011)] 🛛 🗖 🕨 🖓 🕨

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

4 3 5 4

Outline of the presentation

Theoretical approaches for nuclear many-body problem

Ab-initio vs phenomenological models based on energy density functionals (EDF).
 Effective interaction and nuclear matter (NM) Equation of State (EoS)

2 EDF-based models: recent results and further developments

- Mean-field dynamical models with phenomenological EDFs
 - Nature of low-lying dipole modes and connection with nuclear structure
 - Correlation between low-lying dipole excitations and properties of EoS

Extensions of EDF approaches: bridge with ab-initio and beyond mean-field

- Benchmark ab-initio for low-density pure neutron matter (PNM)
- Embedding many-body correlations and clustering phenomena

Summary and perspectives

Mean-field dynamics and dipole excitations

• Mean-field dynamical models with non-relativistic Skyrme-like EDFs

PHYSICAL REVIEW C 99, 054314 (2019)

Interplay between low-lying isoscalar and isovector dipole modes: A comparative analysis between semiclassical and quantum approaches

S. Burrello,¹ M. Colonna,¹ G. Colò,^{2,3} D. Lacroix,⁴ X. Roca-Maza,^{2,3} G. Scamps,^{5,6} and H. Zheng^{1,7}

- Quantal Time-Dependent-Hartree-Fock (TDHF) (or RPA for zero-amplitude)
 - Comparison also with semi-classical Vlasov calculations
 - [S. Burrello, M. Colonna, and H. Zheng, Front. Phys. 7, 53 (2019)]

[H. Zheng, S. Burrello, M. Colonna, and V. Baran, PRC 94, 014313 (2016)]

$$i\hbar\dot{\hat{
ho}}(t) + \left[\hat{
ho}, \hat{H}_{eff}[
ho]\right] = 0$$

Isoscalar (IS) or isovector (IV) dipole operators:

 $\hat{D}_{S} = \sum_{i} \left(r_{i}^{2} - \frac{5}{3} < r^{2} > \right) z_{i}, \qquad \hat{D}_{V} = \sum_{i} \tau_{i} \frac{N}{A} z_{i} - (1 - \tau_{i}) \frac{Z}{A} z_{i}, \quad \tau_{i} = 0 (1) \text{ for } n (p)$

- Strength function: $S_{\mathcal{K}}(E) = \sum_{n} |\langle n | \hat{D}_{\mathcal{K}} | 0 \rangle|^2 \, \delta \left(E (E_n E_0) \right)$ K = S, V
- Transition densities: $\delta \rho_q(r, E) \Rightarrow$ Information on spatial structure of excitations

Mean-field dynamics and dipole excitations

• Mean-field dynamical models with non-relativistic Skyrme-like EDFs

PHYSICAL REVIEW C 99, 054314 (2019)

Interplay between low-lying isoscalar and isovector dipole modes: A comparative analysis between semiclassical and quantum approaches

S. Burrello,1 M. Colonna,1 G. Colò,2,3 D. Lacroix,4 X. Roca-Maza,2,3 G. Scamps,5,6 and H. Zheng1,7

- Quantal Time-Dependent-Hartree-Fock (TDHF) (or RPA for zero-amplitude)
 - Comparison also with semi-classical Vlasov calculations
 - [S. Burrello, M. Colonna, and H. Zheng, Front. Phys. 7, 53 (2019)]

[H. Zheng, S. Burrello, M. Colonna, and V. Baran, PRC 94, 014313 (2016)]

$$i\hbar\dot{\hat{
ho}}(t) + \left[\hat{
ho}, \hat{H}_{eff}[
ho]\right] = 0$$

Isoscalar (IS) or isovector (IV) dipole operators:

$$\hat{D}_{S} = \sum_{i} \left(r_{i}^{2} - \frac{5}{3} < r^{2} > \right) z_{i}, \qquad \hat{D}_{V} = \sum_{i} \tau_{i} \frac{N}{A} z_{i} - (1 - \tau_{i}) \frac{Z}{A} z_{i}, \quad \tau_{i} = 0 (1) \text{ for } n (p)$$

- Strength function: $S_{\mathcal{K}}(E) = \sum_{n} |\langle n | \hat{D}_{\mathcal{K}} | 0 \rangle|^2 \, \delta \left(E (E_n E_0) \right)$ $\mathsf{K} = \mathsf{S}, \mathsf{V}$
- Transition densities: $\delta \rho_q(r, E) \Rightarrow$ Information on spatial structure of excitations

Mean-field dynamics and dipole excitations

• Mean-field dynamical models with non-relativistic Skyrme-like EDFs

PHYSICAL REVIEW C 99, 054314 (2019)

Interplay between low-lying isoscalar and isovector dipole modes: A comparative analysis between semiclassical and quantum approaches

S. Burrello,1 M. Colonna,1 G. Colò,2,3 D. Lacroix,4 X. Roca-Maza,2,3 G. Scamps,5,6 and H. Zheng1,7

- Quantal Time-Dependent-Hartree-Fock (TDHF) (or RPA for zero-amplitude)
 - Comparison also with semi-classical Vlasov calculations
 - [S. Burrello, M. Colonna, and H. Zheng, Front. Phys. 7, 53 (2019)]

[H. Zheng, S. Burrello, M. Colonna, and V. Baran, PRC 94, 014313 (2016)]

$$i\hbar\dot{\hat{
ho}}(t) + \left[\hat{
ho}, \hat{H}_{eff}[
ho]\right] = 0$$

Isoscalar (IS) or isovector (IV) dipole operators:

$$\hat{D}_{S} = \sum_{i} \left(r_{i}^{2} - \frac{5}{3} < r^{2} > \right) z_{i}, \qquad \hat{D}_{V} = \sum_{i} \tau_{i} \frac{N}{A} z_{i} - (1 - \tau_{i}) \frac{Z}{A} z_{i}, \quad \tau_{i} = 0 (1) \text{ for } n (p)$$

• Strength function: $S_{\mathcal{K}}(E) = \sum_{n} |\langle n | \hat{D}_{\mathcal{K}} | 0 \rangle|^2 \, \delta \left(E - (E_n - E_0) \right)$ $\mathsf{K} = \mathsf{S}, \mathsf{V}$

• Transition densities: $\delta \rho_q(r, E) \Rightarrow$ Information on spatial structure of excitations

Nature and structure of low-lying dipole modes

● Evolution with the neutron/proton content ⇒ Sn isotopic chain [see Markova's talk]

● PDR ⇒ isoscalar-like mode

IV component for neutron-rich nuclei
 n and p move in phase for ¹⁰⁰Sn
 involves the outer surface (skin)

- ¹²⁰Sn surface is more diffuse than ¹³²Sn (open vs closed-shell nucleus)
- [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Nature and structure of low-lying dipole modes

• Evolution with the neutron/proton content \Rightarrow Sn isotopic chain [see Markova's talk]

4 E F

● PDR ⇒ isoscalar-like mode

• IV component for neutron-rich nuclei

- n and p move in phase for ¹⁰⁰
- involves the outer surface (skin)
- ¹²⁰Sn surface is more diffuse than ¹³²Sn (open vs closed-shell nucleus)
- [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

Nature and structure of low-lying dipole modes

• Evolution with the neutron/proton content \Rightarrow Sn isotopic chain [see Markova's talk]

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nature and structure of low-lying dipole modes

• Evolution with the neutron/proton content \Rightarrow Sn isotopic chain [see Markova's talk]

- (**open** vs **closed-shell** nucleus)
- [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Stefano Burrello, Maria Colonna Connecting low-lying dipole modes to structure and EoS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mean-field dynamical models and equation of state Low-lying dipole modes: neutron skin and symmetry energy

Nature and structure of low-lying dipole modes

• Evolution with the neutron/proton content \Rightarrow Sn isotopic chain [see Markova's talk]

GDR

E [MeV]

- PDR ⇒ isoscalar-like mode
 - IV component for neutron-rich nuclei
 - n and p move in phase for ¹⁰⁰Sn
 - involves the outer surface (skin)
- ¹²⁰Sn surface is more diffuse than ¹³²Sn (open vs closed-shell nucleus)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Stefano Burrello, Maria Colonna

(E) [10³ fm⁶/Me V]

S_V (E) [fm²/MeV]

Connecting low-lying dipole modes to structure and EoS

Evolution of IS/IV PDR along Sn isotopic chain

- Question: IV PDR fraction of Energy Weighted Sum Rule does not grow from N
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

• Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{PD}}{f_{PDR}^{FB}}$

・ 同 ト ・ 三 ト ・ 三

Evolution of IS/IV PDR along Sn isotopic chain

- Question: IV PDR fraction of Energy Weighted Sum Rule does not grow from N
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength

• Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{IV}}{f_{PDR}^{IS}}$

.

Outline of the presentation

Theoretical approaches for nuclear many-body problem

Ab-initio vs phenomenological models based on energy density functionals (EDF)
 Effective interaction and nuclear matter (NM) Equation of State (EoS)

2 EDF-based models: recent results and further developments

- Mean-field dynamical models with phenomenological EDFs
 - Nature of low-lying dipole modes and connection with nuclear structure
 - Correlation between low-lying dipole excitations and properties of EoS

Extensions of EDF approaches: bridge with ab-initio and beyond mean-field

- Benchmark ab-initio for low-density pure neutron matter (PNM)
- Embedding many-body correlations and clustering phenomena

Summary and perspectives

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

EFT-inspired EDFs: YGLO and ELYO

• Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas

• Lee-Yang (LY) expansion in $(a_s k_F)$ from EFT $(\nu_i = 2, 4 \text{ for PNM, SNM})$ $\frac{E}{k_F} = \frac{\hbar^2 k_F^2}{2} \left[\frac{3}{2} + (\nu_i - 1) \frac{2}{2} (k_F a_F) + (\nu_i - 1) \frac{4}{2} (11 - 2 \ln 2) (k_F a_F)^2 + (\nu_i - 1) \frac{4}{2} (11 - 2 \ln 2) (k_F a_F)^2 \right]$

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

EFT-inspired EDFs: YGLO and ELYO

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang (LY) expansion in $(a_s k_F)$ from EFT $(\nu_i = 2, 4$ for PNM, SNM)

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

EFT-inspired EDFs: YGLO and ELYO

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang (LY) expansion in $(a_s k_F)$ from EFT $(\nu_i = 2, 4$ for PNM, SNM)

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

YGLO: EFT resummed formula and benchmark

• Potential part of YGLO functional ($a_i = -18.9(-20.0)$ fm, i = S, N)

$$\mathcal{E}_{Y} = Y_{i}[\rho]\rho^{2} + D_{i}\rho^{8/3} + F_{i}\rho^{(\alpha+2)}, \qquad Y_{i}[\rho] = \frac{B_{i}}{1 - R_{i}\rho^{1/3} + C_{i}\rho^{2/3}}$$
$$B_{i} = \frac{2\pi\hbar^{2}}{m}\frac{\nu_{i} - 1}{\nu_{i}}a_{i}, \qquad R_{i} = \frac{6}{35\pi}\left(\frac{6\pi^{2}}{\nu_{i}}\right)^{1/3}(11 - 2\ln 2)a_{i}, \qquad \alpha = 0.7$$

Benchmark on ab-initio ⇒ fit of PNM Quantum Monte-Carlo calculations
Mapping with Skyrme functional E_{Sk} = E₀ + E₃ + E_{eff} (except for E₀ ↔ Y_i)

YGLO: EFT resummed formula and benchmark

• Potential part of YGLO functional ($a_i = -18.9(-20.0)$ fm, i = S, N)

$$\mathcal{E}_{Y} = Y_{i}[\rho]\rho^{2} + D_{i}\rho^{8/3} + F_{i}\rho^{(\alpha+2)}, \qquad Y_{i}[\rho] = \frac{B_{i}}{1 - R_{i}\rho^{1/3} + C_{i}\rho^{2/3}}$$
$$B_{i} = \frac{2\pi\hbar^{2}}{m}\frac{\nu_{i} - 1}{\nu_{i}}a_{i}, \qquad R_{i} = \frac{6}{35\pi}\left(\frac{6\pi^{2}}{\nu_{i}}\right)^{1/3}\left(11 - 2\ln 2\right)a_{i}, \qquad \alpha = 0.7$$

● Benchmark on ab-initio ⇒ fit of PNM Quantum Monte-Carlo calculations

- Mapping with Skyrme functional $\mathcal{E}_{Sk} = \mathcal{E}_0 + \mathcal{E}_3 + \mathcal{E}_{eff}$ (except for $\mathcal{E}_0 \leftrightarrow Y_i$)
 - momentum-dependent term $\mathcal{E}_{\text{eff},Y} = WD_i$

YGLO: EFT resummed formula and benchmark

• Potential part of YGLO functional ($a_i = -18.9(-20.0)$ fm, i = S, N)

$$\mathcal{E}_{Y} = Y_{i}[\rho]\rho^{2} + D_{i}\rho^{8/3} + F_{i}\rho^{(\alpha+2)}, \qquad Y_{i}[\rho] = \frac{B_{i}}{1 - R_{i}\rho^{1/3} + C_{i}\rho^{2/3}}$$
$$B_{i} = \frac{2\pi\hbar^{2}}{m}\frac{\nu_{i} - 1}{\nu_{i}}a_{i}, \qquad R_{i} = \frac{6}{35\pi}\left(\frac{6\pi^{2}}{\nu_{i}}\right)^{1/3}(11 - 2\ln 2)a_{i}, \qquad \alpha = 0.7$$

● Benchmark on ab-initio ⇒ fit of PNM Quantum Monte-Carlo calculations

- Mapping with Skyrme functional E_{Sk} = E₀ + E₃ + E_{eff} (except for E₀ ↔ Y_i)
 momentum-dependent term E_{eff Y} = WD_i
 - extra dense dense dense term $\mathcal{E}_{a,Y} = (1 W)Dr(w) h c \sqrt{\frac{1}{2}} (2/\frac{3}{2})$

YGLO: EFT resummed formula and benchmark

• Potential part of YGLO functional ($a_i = -18.9(-20.0)$ fm, i = S, N)

$$\mathcal{E}_{Y} = Y_{i}[\rho]\rho^{2} + D_{i}\rho^{8/3} + F_{i}\rho^{(\alpha+2)}, \qquad Y_{i}[\rho] = \frac{B_{i}}{1 - R_{i}\rho^{1/3} + C_{i}\rho^{2/3}}$$
$$B_{i} = \frac{2\pi\hbar^{2}}{m}\frac{\nu_{i} - 1}{\nu_{i}}a_{i}, \qquad R_{i} = \frac{6}{35\pi}\left(\frac{6\pi^{2}}{\nu_{i}}\right)^{1/3}\left(11 - 2\ln 2\right)a_{i}, \qquad \alpha = 0.7$$

● Benchmark on ab-initio ⇒ fit of PNM Quantum Monte-Carlo calculations

- Mapping with Skyrme functional $\mathcal{E}_{Sk} = \mathcal{E}_0 + \mathcal{E}_3 + \mathcal{E}_{eff}$ (except for $\mathcal{E}_0 \leftrightarrow Y_i$)
 - momentum-dependent term $\mathcal{E}_{eff,Y} = WD_i$
 - extra density dependent term $\mathcal{E}'_{3,Y} = (1 W)D_i$ (with $\alpha'_Y = 2/3$)

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

ELYO: density-dependent scattering length

- ELYO: Density-dependent scattering length
 - Tuned by **low-density** condition $|a_s(k_F)k_F| = 1$

Mabaing With way for Srythet into EDF

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

ELYO: density-dependent scattering length

- ELYO: Density-dependent scattering length
 - Tuned by **low-density** condition $|a_s(k_F)k_F| = 1$
- Mapping with s-wave Skyrme-like EDF

$$t_0(1-x_0) = \frac{4\pi\hbar^2}{m} a_s(\rho)$$

$$t_3(1-x_3) = \frac{144\hbar^2}{3} 5m(3\pi^2)^{1/3}(11-2\ln 2)a_s^2(\rho)$$

$$t_1(1-x_1) = W_1 \frac{2\pi\hbar^2}{m} \left(a_s^2(\rho)r_s + 0.19\pi a_s^3(\rho)\right)$$

Including LY p-wave contributions

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

ELYO: density-dependent scattering length

- ELYO: Density-dependent scattering length
 - Tuned by **low-density** condition $|a_s(k_F)k_F| = 1$
- Mapping with s-wave Skyrme-like EDF

$$\begin{split} t_0(1-x_0) &= \frac{4\pi\hbar^2}{m} a_s(\rho) \\ t_3(1-x_3) &= \frac{144\hbar^2}{3} 5m(3\pi^2)^{1/3}(11-2\ln 2)a_s^2(\rho) \\ t_1(1-x_1) &= W_1 \frac{2\pi\hbar^2}{m} \left(a_s^2(\rho)r_s + 0.19\pi a_s^3(\rho)\right) \end{split}$$

Including LY p-wave contributions

$$t_2(1-x_2) = W_2 \frac{4\pi\hbar^2}{m} a_p^3(\rho)$$

[J. Bonnard, M. Grasso, D. Lacroix, PRC 101, 064319 (2020)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Energy of neutron drops and effective mass

Application of YGLO and ELYO on finite systems ⇒ neutron drops [J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)] [S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]

- Adjustment on energy values of drops available from ab-initio calculations
- Bad agreement with ab-initio effective mass predictions (s-wave)
 ⇒ importance of p-wave contribution
 - [J. Bonnard, M. Grasso, D. Lacroix, Phys. Rev. C 101, 064319 (2020)]

4 E b

Energy of neutron drops and effective mass

- Application of YGLO and ELYO on finite systems ⇒ neutron drops
 - [J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]
 - [S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]
- Adjustment on energy values of drops available from ab-initio calculations
- Bad agreement with ab-initio effective mass predictions (s-wave)
 ⇒ importance of p-wave contribution
 - [J. Bonnard, M. Grasso, D. Lacroix, Phys. Rev. C 101, 064319 (2020)]

Energy of neutron drops and effective mass

- Application of YGLO and ELYO on finite systems ⇒ neutron drops
 [J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]
 [S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]
- Adjustment on energy values of drops available from ab-initio calculations
- Bad agreement with ab-initio effective mass predictions (s-wave)
 ⇒ importance of p-wave contribution
 - [J. Bonnard, M. Grasso, D. Lacroix, Phys. Rev. C 101, 064319 (2020)]

Binding energy E/A [MeV]

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

< 口 > < 同 > < 三 > < 三

Finite nuclei and neutron drip-line with YGLO

• Hartree-Fock calculations with YGLO: ground state properties

• Correlation between tail of density profiles and slope of $S(\rho)$ at low-density

Binding energy E/A [MeV]

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

< 口 > < 同 > < 三 > < 三

Finite nuclei and neutron drip-line with YGLO

• Hartree-Fock calculations with YGLO: ground state properties

• Correlation between tail of density profiles and slope of $S(\rho)$ at low-density

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Finite nuclei and neutron drip-line with YGLO

• Hartree-Fock calculations with YGLO: ground state properties

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Finite nuclei and neutron drip-line with YGLO

• Hartree-Fock calculations with YGLO: ground state properties

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

.

Outline of the presentation

Theoretical approaches for nuclear many-body problem

Ab-initio vs phenomenological models based on energy density functionals (EDF)
 Effective interaction and nuclear matter (NM) Equation of State (EoS)

2 EDF-based models: recent results and further developments

- Mean-field dynamical models with phenomenological EDFs
 - Nature of low-lying dipole modes and connection with nuclear structure
 - Correlation between low-lying dipole excitations and properties of EoS

Extensions of EDF approaches: bridge with ab-initio and beyond mean-field

- Benchmark ab-initio for low-density pure neutron matter (PNM)
- Embedding many-body correlations and clustering phenomena

Summary and perspectives

- 4 同 1 4 回 1 4 回 1

Embedding correlations and clusters in EDFs

- Many-body correlations at densities below ho_{0}
 - Formation of nucleon **bound** states (clustering)
- Phenomenological EDF-based models with clusters
 - Generalized relativistic density functional (GRDF)
 - [S. Typel et al., PRC 81, 015803 (2010)]
- Modified Δr_{np} L correlation [see talk of Z. Yang]

[S. Typel, PRC 89, 064321 (2014)]

- Nucleon knock-out in inelastic electron scattering
 [0. Hen et al. (CLAS coll.) Science 346, 614 (2014)]
 - Neutron-proton short-range correlations (SRCs)

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Embedding correlations and clusters in EDFs

- Many-body correlations at densities below ho_{0}
 - Formation of nucleon **bound** states (clustering)
- Phenomenological EDF-based models with clusters
 - Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
- Modified Δr_{np} L correlation [see talk of Z. Yang]
 - [S. Typel, PRC 89, 064321 (2014)]
- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - Neutron-proton short-range correlations (SRCs)

∃ → ∢

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Embedding correlations and clusters in EDFs

- Many-body correlations at densities below ho_{0}
 - Formation of nucleon **bound** states (clustering)
- Phenomenological EDF-based models with clusters
 - Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
- Modified Δr_{np} L correlation [see talk of Z Yang]
 - [S. Typel, PRC 89, 064321 (2014)]
- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - Neutron-proton short-range correlations (SRCs)

THE EUROPEAN PHYSICAL JOURNAL A Embedding short-range correlations in relativistic density functionals through quasi-deuterons 8. Burndu⁽⁻⁾, 8. Typel⁻¹0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Embedding correlations and clusters in EDFs

- Many-body correlations at densities below ρ₀
 - Formation of nucleon **bound** states (clustering)
- Phenomenological EDF-based models with clusters
 - Generalized relativistic density functional (GRDF)
 [S. Typel et al., PRC 81, 015803 (2010)]
- Modified Δr_{np} L correlation [see talk of Z. Yang]

[S. Typel, PRC 89, 064321 (2014)]

- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - Neutron-proton short-range correlations (SRCs)

THE EUROPEAN PHYSICAL JOURNAL A Embedding short-range correlations in relativistic density functionals through quasi-deuterons 8. Burdh⁽⁻⁾, 8. Typel⁽⁻⁾

頁 0.30 RTF with a correlation § 0.25 0.20 0.15 0.10 0.05 0.00 10 20 30 40 50 60 90 100 110 120 slope coefficient L [MeV] fraction 0.6 mass uo 0 SNM

barvon number density n. [fm⁻³]

What next?

- Inclusion of light clusters (and quasi-deuterons) within a kinetic approach
- Study of collective excitation modes [in coll. with R. Wang + INFN CT]

4 E F

Outline of the presentation

Theoretical approaches for nuclear many-body problem

- Ab-initio vs phenomenological models based on energy density functionals (EDF)
- Effective interaction and nuclear matter (NM) Equation of State (EoS)

2 EDF-based models: recent results and further developments

ullet Mean-field dynamical models with phenomenological EDFs

⇒ Extensions of EDE approaches shridge with ab-initio and beyond mean-field

Summary and perspectives

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Final remarks and conclusions

Main topic

- MF calculations for nuclear structure and small amplitude dynamics
- Extension of EDFs to bridge with ab-initio approaches and include clusters

< ロ > (同 > (回 > (回 >))

Final remarks and conclusions

Main topic

- MF calculations for nuclear structure and small amplitude dynamics
- Extension of EDFs to bridge with ab-initio approaches and include clusters

Main results

- Characterization of the nature of low-lying response, in view of IS/IV mixing
- Evolution of low-lying modes with density profiles and neutron skin
- Application to finite systems of EDFs grounded on ab-initio at low-density
- Inclusion of light clusters to embed correlations in relativistic MF approaches

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Final remarks and conclusions

Main topic

- MF calculations for nuclear structure and small amplitude dynamics
- Extension of EDFs to bridge with ab-initio approaches and include clusters

Main results

- Characterization of the nature of low-lying response, in view of IS/IV mixing
- Evolution of low-lying modes with density profiles and neutron skin
- Application to finite systems of EDFs grounded on ab-initio at low-density
- Inclusion of light clusters to embed correlations in relativistic MF approaches

Further developments and outlooks

- Improving properties of EFT-inspired EDFs and use in MF dynamical models
- Inclusion of light clusters in kinetic approaches to study collective modes

Final remarks and conclusions

Main topic

- MF calculations for nuclear structure and small amplitude dynamics
- Extension of EDFs to bridge with ab-initio approaches and include clusters

Main results

- Characterization of the nature of low-lying response, in view of IS/IV mixing
- Evolution of low-lying modes with density profiles and neutron skin
- Application to finite systems of EDFs grounded on ab-initio at low-density
- Inclusion of light clusters to embed correlations in relativistic MF approaches

Further developments and outlooks

- Improving properties of EFT-inspired EDFs and use in MF dynamical models
- Inclusion of light clusters in kinetic approaches to study collective modes

THANK YOU FOR YOUR KIND ATTENTION!

イロト イボト イヨト イヨト

Back-up slides

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Influence of the effective interaction

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - \Rightarrow isolate influence of IV channel

$$E_{\rm sym}(\rho) = C(\rho)l^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy slope:

IV PDR

● Agreement with Vlasov results [Zheng, H. et al., PRS 94, 42016 法 , < ∋

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Influence of the effective interaction

SAMi-J interactions [X. Roca-Maza et al., PRC87, (2013)] SAMi-J27 35 \Rightarrow isolate influence of IV channel SAMi-J31 SAMi-J35 30 $E_{\rm sym}(\rho) = C(\rho)l^2$ C (b) [MeV] 40 TDHF SAMi-J27 35 SAMi-J31 ¹³²Sn SAMi-J35 10 30 S_V (E) [fm²/MeV] 25 0.2 0.4 0.6 0.8 20 ρ / ρ_0 15 Sensitivity of E_{IV-GDR} to E_{sym} at crossing • 10 5 10 15 20 E [MeV] [Zheng, H. et al., PRC 94, (2016)]

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

SAMi-J interactions

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Influence of the effective interaction

[X. Roca-Maza et al., PRC87, (2013)] \Rightarrow isolate influence of IV channel $E_{\rm sym}(\rho) = C(\rho)l^2$ 40 TDHF SAMi-J27 35 SAMi-J31 ¹³²Sn SAMi-J35 30 S_V (E) [fm²/MeV] 25 20 15 10 5 10 20 E [MeV]

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy slope:
 - IV PDR
 - Agreement with Vlasov results

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Influence of the effective interaction

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{
m sym}(
ho)=C(
ho)I^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy **slope**:
 - IV PDR ⇔ neutron skin thickness
- Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Influence of the effective interaction

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{\rm sym}(
ho) = C(
ho) l^2$$

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Comparison between Vlasov and TDHF model

• Good reproduction of IV GDR and IS GDR

Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]

PDR mode (outer surface).

toroidal mode (inner surface against bulk).

Displacement of PDR peaks ⇒ numerical treatment of surface.

Comparison between Vlasov and TDHF model

• Good reproduction of IV GDR and IS GDR

- Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
 - PDR mode (outer surface)
 - toroidal mode (inner surface against bulk)
- Displacement of PDR peaks ⇒ numerical treatment of surface.

Comparison between Vlasov and TDHF model

• Good reproduction of IV GDR and IS GDR

- Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
 - PDR mode (outer surface)
 - toroidal mode (inner surface against bulk)
- Displacement of PDR peaks ⇒ numerical treatment of surface

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Link between nuclear response and density profiles

🔹 Stefano Burrello, Maria Colonna 👘 🤇

Connecting low-lying dipole modes to structure and EoS

イロト イボト イヨト イヨト

Comparison between TDHF and RPA

• TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures

- Question: which numerical parameters ensure the best agreement?
- Dependence on box size (i.e. discretization of continuum single-particle states)
 [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
- Very good agreement when the size is large enough (also for transition densities)

イロト イボト イヨト イヨト

Comparison between TDHF and RPA

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on box size (i.e. discretization of continuum single-particle states)
 [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
- Very good agreement when the size is large enough (also for transition densities)

Comparison between TDHF and RPA

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on **box size** (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

• Very good agreement when the size is large enough (also for transition densities)

Comparison between TDHF and RPA

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on **box size** (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

• Very good agreement when the size is large enough (also for transition densities)

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Back-up slides: focus on IS/IV mixing

< 口 > < 同

Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Back-up slides: dipole strength in Sn isotopes

Phenomenological energy density functional approaches Refined EDFs: bridge with ab-initio and beyond mean-field Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Back-up slides: transition densities comparison

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Phenomenological energy density functional approaches Refined EDFs: bridge with ab-initio and beyond mean-field Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Back-up slides: transition densities of PDR

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS

Phenomenological energy density functional approaches Refined EDFs: bridge with ab-initio and beyond mean-field Benchmark on microscopic calculations at low-density Embedding many-body correlations and clusters

Back-up slides: torodail mode and 2nd IV peak

Stefano Burrello, Maria Colonna

Connecting low-lying dipole modes to structure and EoS