

Nuclear equation of state from nuclear collective excited state properties

Xavier Roca-Maza

Università degli Studi di Milano

INFN sezione di Milano

7th International Conference on Collective Motion in Nuclei under Extreme Conditions

Dipartimento di Fisica e Astronomia "Ettore Majorana"

June 11th - 16th 2023, Catania, Italy.

Nuclear Equation of State (EoS)

Energy per nucleon (e) as a function of the total density $\rho = \rho_n + \rho_p$ and the relative difference $\delta = (\rho_n - \rho_p)/\rho$ for unpolarized uniform matter at T=0 assuming isospin symmetry (even powers of δ). For $\underline{\delta} \rightarrow 0$:

$$e(\rho, \delta) = e(\rho, 0) + S_2(\rho)\delta^2 + S_4(\rho)\delta^4 + \mathcal{O}[\delta^6]$$

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0$$

Isaac Vidaña, Constança Providência, Artur Polls, and Arnau Rios Phys. Rev. C **80**, 045806 – Published 23 October 2009

Nuclear Equation of State (EoS)

Unpolarized, uniform nuclear matter at T=0 assuming isospin symmetry

$$e(
ho,\delta)=e(
ho,0)+S_2(
ho)\delta^2$$

It is customary to also **expand** $e(\rho,0)$ and $S(\rho)$ around nuclear **saturation density** $\rho_0 \sim 0.16 \text{ fm}^{-3}$ $e(\rho,0) = e(\rho_0,0) + \frac{1}{2}K_0x^2 + \mathcal{O}[\rho^3]$ where $x = \frac{\rho - \rho_0}{3\rho_0}$

$$S(\rho) = J + Lx + \frac{1}{2} \tilde{K}_{\text{sym}} x^2 + \mathcal{O}[\rho^3, \delta^4]$$

 $K_0 \rightarrow how \ compressible$ is symmetric matter at ρ_0

 $J \rightarrow penalty energy$ for converting all protons into neutrons in symmetric matter at ρ_0

 $P(\rho = \rho_0, \delta = 0) = 0 \text{ MeV fm}^{-3}$ $L \rightarrow \text{neutron pressure}$ in neutron matter at ρ_0

Nuclear EoS - XRM

EoS from current nuclear models Micorscopic and phenomenological models constrainted by different data display similar discrepances on the EoS

Many-body methods have been shown to agree

Main source of uncertainty in the nuclear Hamiltonian

How one can connect finite nuclear properties with EoS properties:

Example: Neutron skin thickness $(\Delta r_{np} = r_n - r_p)$ is a good proxy to L

B. Alex Brown Phys. Rev. Lett. 85, 5296 (2000)

 Δr_{np} in a heavy neutron rich nucleus is related to the neutron pressure $(\delta=1)$ around ρ_0 (L).

→ EoS:

$$\overline{P(
ho_0,\delta)}=
ho_0^2rac{\partial e(
ho,\delta)}{\partial
ho}igg|_{
ho=
ho_0}=rac{1}{3}
ho_0\delta^2L$$

→ Micro & Pheno models:

$\Delta r_{np} \approx \frac{1}{12} \frac{N - Z}{A} \frac{R}{J} L$

→ Macro Model:

→ More Pheno models:

 Δr_{np}

Which information can be obtained on the EoS from nuclear collective excitations? (personal overview)

Giant Monopole Resonance do we understand it?

The compression-mode giant resonances and nuclear incompressibility

Umesh Garg.^a, Gianluca Colò^b^c A ⊠ Progress in Particle and Nuclear Physics Volume 101, July 2018, Pages 55-95

arXiv:2211.01264 [pdf, ps, other] nucl-th

Towards a Unified Description of Isoscalar Giant Monopole Resonances in a Self-Consistent Quasiparticle-Vibration Coupling Approach

20

20

20

Authors: Z. Z. Li, Y. F. Niu, G. Colò

0

Very **recently** two works explain **ISGMR** in different nuclei within the **PVC** approach

These calculations points towards a **plausible estimate** on K = 220-260 MeV. **Is that the final word?** Further experiments are planned.

Relativistic approach to the nuclear breathing mode

Phys. Rev. C 107, L041302 - Published 5 April 2023

Dipole polarizability, J and L

$$lpha_D={8\pi e^2\over 9}m_{-1}(E1)$$

Dipole polarizability (*a J*) probes the **neutron skin thickness**

Determination of the J vs L relation from experimental data according to Energy Density Functionals (EDFs)

X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz Phys. Rev. C **88**, 024316 – Published 20 August 2013

X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò, N. Paar, J. Piekarewicz, and D. Vretenar Phys. Rev. C **92**, 064304 – Published 8 December 2015

Dipole polarizability: do we understand it?

S. Goriely, S. Péru, G. Colò, X. Roca-Maza, I. Gheorghe, D. Filipescu, and H. Utsunomiya Phys. Rev. C **102**, 064309 – Published 9 December 2020

S. Bassauer, P. von Neumann-Cosel, P.-G. Reinhard et al. Physics Letters B 810 (2020) 135804

Electric dipole polarizability of ⁴⁰Ca

R. W. Fearick, P. von Neumann-Cosel, S. Bacca, J. Birkhan, F. Bonaiti, I. Brandherm, G. Hagen, H. Matsubara, W. Nazarewicz, N. Pietralla, V. Yu. Ponomarev, P. -G. Reinhard, X. Roca-Maza, A. Richter, A. Schwenk, J. Simonis, and A. Tamii

Phys. Rev. Research 5, L022044 – Published 31 May 2023

A_{PV} (sensitive to Δr_{np}) **VS Q**_D (sensitive to J and Δr_{np}) in ⁴⁸Ca and ²⁰⁸Pb

10

and Witold Nazarewicz, PRL 127 232501 (2021) and PRL 129 232501 (2022)

Hagen et al. Nature Physics 12, 186-190 (2016) and H. Bu et al. Nature Physics (2022)

The larger the Δr_{np} , the larger the ISB contributions to IAS in ²⁰⁸Pb

X. Roca-Maza, G. Colò, and H. Sagawa Phys. Rev. Lett. **120**, 202501 – Published 18 May 2018

11

Spin Dipole Resonance and \Delta r_{np} Difficult to measure and analyze? $\sum_{i=1}^{A} \sum_{M} \tau_{\pm}(i) r_{i}^{L} [Y_{L}(\hat{r}_{i}) \otimes \sigma(i)]_{JM}$

Conclusions

Different ways to investigate properties of the symmetry energy and/or the Δrnp provide different answers:

→ current nuclear models likely miss relevant physics

→ interest in repeating and/or improving the analysis of some key experiments (or propose new ones)

Summary

with qualitative indication of accuracy needed to describe experiment (note that absolute values might be subject to systematics)

collective excited state properties of nuclei

X. Roca-Maza^a 🙁 🖾 . N. Paar^b

Progress in Particle and Nuclear Physics Volume 101, July 2018, Pages 96-176

Collaborators

- → Gianluca **Colò** (University of Milan)
- → Hiroyuki **Sagawa** (University of Aizu & RIKEN)
- → Shihang **Shen** (Forschungszentrum Jülich)
- → Xavier Vinyes & Mario Centelles (University of Barcelona)
- → Jorge **Piekarewicz** (Florida State University)
- → Nils **Paar** & Dario **Vretenar** (University of Zagreb)
- → Bijay K. Agrawal (Saha Institute of Nuclear Physics)
- → P.-G. **Reinhard** (University of Erlangen-Nürnberg)
- → Yifei Niu (Lanzhou University)
- → Witold **Nazarewicz** (FRIB and Michigan State University)
- → Stephane **Goriely** (Université Libre de Bruxelles)
- → Sophie **Péru** (Université Paris-Saclay, CEA)