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Dipole strength distribution in nearly spherical atomic nuclei
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Cartoon vs. Reality

Courtesy of A. Zilges (University of Cologne);
see older version in, e.g., FRIB400 white book and in A. Zilges, 
Journal of Physics: Conference Series 590, 012006 (2015).

A. Tamii et al., PRL 107, 062502 (2011)

0 ⟶ 𝐸𝐸𝐸
𝐸 ⟶ 𝑀𝑀𝐸

[Review-article selection: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013) and A. Bracco, E.G. Lanza, and A. Tamii, PPNP 106, 360 (2019)]
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An open question – How collective is the PDR?
(What is the single-particle structure of the PDR?)

5 [X. Roca-Maza et al., PRC 85, 024601 (2012); see also A. Bracco et al., PPNP 106, 360 (2019)]
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Existence of PDR can influence (n,γ) rates of nuclei involved in the r process

[Figure 1: P. Scholz, PhD thesis, University of Cologne (2019)]
[Figure 2: H. Lenske and N. Tsoneva, EPJA 55, 238 (2019)]
[Review article: A.C. Larsen et al., PPNP 107, 69 (2019)]

Influence of the γ-ray strength function
Variations of up to a factor of 100!  

Implemented in TALYS code
Different theoretical γSF for Zn isotopes

... Some γSFs have no low-lying E1 or 
M1 component, only a “tail” of the 
IVGDR.
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Existence of PDR can influence (n,γ) rates of nuclei involved in the r process

[Figure 1: P. Scholz, PhD thesis, University of Cologne (2019)]
[Figure 2: H. Lenske and N. Tsoneva, EPJA 55, 238 (2019)]
[Review article: A.C. Larsen et al., PPNP 107, 69 (2019)]

Influence of the γ-ray strength function
Variations of up to a factor of 100!  

Implemented in TALYS code
Different theoretical γSF for Zn isotopes

... Some γSFs have no low-lying E1 or 
M1 component, only a “tail” of the 
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The single-particle structure of the PDR in 208Pb and the A=50-70 mass region
1) 207Pb(d,p)208Pb with Q3D@MLL (Garching, Germany)
2) 47,49Ti(d,p)48,50Ti and 61Ni(d,p)62Ni at FSU SE-SPS (Tallahassee, Florida)

 Commissioning of the CeBrA demonstrator for particle-γ coincidence 
experiments [only an outlook if time left!]
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207Pb(d,p)208Pb @ Q3D at MLL (Garching, Germany)
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207Pb(d,p)208Pb @ Q3D at MLL (Garching, Germany)

𝐽𝐽𝜋𝜋
=
𝐸− 𝐽𝐽𝜋𝜋

=
𝐸−

FWHM ~ 6 keV

Lines DWBA calculations for:
Blue: 3𝑝𝑝 ⁄1 2

−1 4𝑠𝑠 ⁄1 2
+1 (𝑙𝑙 = 0)

Red: 3𝑝𝑝 ⁄1 2
−1 3𝑑𝑑 ⁄3 2

+1 (𝑙𝑙 = 2)

 Ed = 22 MeV
 207Pb target (0.11 mg/cm2; 99% 

enrichment) on thin Carbon backing.
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207Pb(d,p)208Pb @ Q3D at MLL (Garching, Germany)

Excitation energies of 1- states were known from previous experiments. 
Calculated angular distributions are in excellent agreement with data.
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𝐽𝐽𝜋𝜋 = 𝐸− states
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(d,p) and (p,p’)IAR data compared to other probes (Experiment)

Two strong states. Remaining strength 
fragmented up to Sp.

Dominant fragments for some p-h excitations 
at “low” Ex. In general, strength is 
fragmented among several states.

One dominating state but significant IV 
strength below Sn. (PDR < 8.3 MeV?)

IS strength below Sn carried by four states.

Main observations:

[(p,p’)300 MeV: I. Poltoratska et al., PRC 85, 041304(R) (2012)]
[(17O,17O’γ): F.C.L. Crespi et al., PRL 113, 012501 (2014)]

[(p,p’)IAR analysis: A. Heusler]
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(d,p) and (p,p’)IAR data compared to other probes (Experiment)

(d,p) angular distributions

Complex structure

3𝑝𝑝 ⁄1 2
−1 4𝑠𝑠 ⁄1 2

+1

(probably some other small 
contributions)

At least three p-h 
contributions.
A few contributions 
but mainly 

3𝑝𝑝 ⁄1 2
−1 3𝑑𝑑 ⁄3 2

+1

Detailed spectroscopy can provide access 
to some of the p-h E1 matrix elements.

Provide an idea about cancellation effects.
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[A. Heusler]
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Experimental observables compared to LSSM and QPM calculations
[B.A. Brown (LSSM) and N. Tsoneva (QPM)]

�𝜎𝜎 𝑑𝑑,𝑝𝑝 ;exp. = 𝐸524 𝐸7 𝜇𝜇b

 Below Sn:

�𝜎𝜎 𝑑𝑑,𝑝𝑝 ;LSSM = 𝐸470 𝜇𝜇b

�𝜎𝜎 𝑑𝑑,𝑝𝑝 ;QPM = 𝐸676 𝜇𝜇b

 Above Sn and up to Sp:

�𝜎𝜎 𝑑𝑑,𝑝𝑝 ;exp. = 254(9) 𝜇𝜇b

�𝜎𝜎 𝑑𝑑,𝑝𝑝 ;LSSM = 22 𝜇𝜇b

But 13% of d3/2 and 9% of s1/2 pushed to energies higher 
than 8.6 MeV (LSSM). @Sn ~ 99 𝜇𝜇b, @Sp ~ 82 𝜇𝜇b.

7% (d3/2) and 3.4% (s1/2) are fragmented in QPM.
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Experimental observables compared to LSSM and QPM calculations
[B.A. Brown (LSSM) and N. Tsoneva (QPM)]

[A. Heusler]
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Comparison LSSM and QPM
[B.A. Brown (LSSM) and N. Tsoneva (QPM)]
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Comparison LSSM and QPM

ExperimentLSSM

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]
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Comparison LSSM and QPM
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Comparison LSSM and QPM

Experiment

QPM

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]
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Comparison LSSM and QPM

Experiment

[B.A. Brown (LSSM) and N. Tsoneva (QPM)]
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PDR or just 1p-1h? Neutron skin or toroidal or something entirely different?
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PDR or just 1p-1h? Neutron skin or toroidal or something entirely different?

So, is this the oscillation of the neutron 
skin? The jury is still out.
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E1 strength increase beyond 𝑵𝑵 = 𝟐𝟐𝟐𝟐 – Onset of a PDR?

[P. Ries et al., PRC 100, 021301(R) (2019) and M. Scheck et al., PRC 88, 044304 (2013)]

Significant 
strength increase

(𝑍𝑍 = 26,𝑁𝑁 = 30)

(𝑍𝑍 = 28,𝑁𝑁 = 30)

(𝑍𝑍 = 28,𝑁𝑁 = 32)
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(Word of caution: These results are for resolved states!)



The microscopic structure of the PDR and its influence on the B(E1) distribution

[T. Inakura et al., PRC 84, 021302(R) (2011)]

?
28

The E1 strength of the PDR strongly depends on the position of the Fermi level and shows a clear 
correlation with the occupation of the orbits with the orbital angular momenta less than 3ℏ (𝒍𝒍 ≤ 𝟐𝟐). We 
also found a strong correlation between the isotopic dependence of the neutron skin thickness and the pygmy 
dipole strength.

Strength increase is predicted and not 
necessarily linked to neutron excess!
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Physics at FSU and the John D. Fox Laboratory
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The John D. Fox Laboratory at Florida State University

LINAC
(12 SC 𝛽𝛽 = 0.𝐸ATLAS resonators) 

TR1

TR2

TR1:
CATRiNA
ENCORE

TR2:
RESOLUT
ANASEN
ENCORE
SE-SPS
CLARION-2
CeBrA

Four main experimental programs:
 In-flight radioactive beams with RESOLUT 
 High-resolution spectroscopy with Super-

Enge Split-Pole Spectrograph (SE-SPS)
 CLARION-2 Clover γ-ray array (w. ORNL)
 Neutron detection with CATRiNA

9-MV Tandem + 8-MV LINAC

Th
e 

La
bo

ra
to

ry



31

The John D. Fox Laboratory at Florida State University

LINAC
(12 SC 𝛽𝛽 = 0.𝐸ATLAS resonators) 

TR1

TR2

TR1:
CATRiNA
ENCORE

TR2:
RESOLUT
ANASEN
ENCORE
SE-SPS
CLARION-2
CeBrA

Four main experimental programs:
 In-flight radioactive beams with RESOLUT 
 High-resolution spectroscopy with Super-

Enge Split-Pole Spectrograph (SE-SPS)
 CLARION-2 Clover γ-ray array (w. ORNL)
 Neutron detection with CATRiNA

9-MV Tandem + 8-MV LINAC

Th
e 

La
bo

ra
to

ry



32

The Super-Enge Split-Pole Spectrograph @ FSU John D. Fox Laboratory

Solid-angle acceptance comparable to Q3D, larger momentum acceptance, but energy 
resolution is worse by a factor of two or more (target and kinematics dependence).
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61Ni(d,p)62Ni at 𝑬𝑬𝒅𝒅 = 𝟏𝟏𝟏𝟏 MeV with FSU SE-SPS

 Three magnetic settings to cover excitation-
energy range up to neutron-separation threshold.

 Angular distributions measured from 𝐸0° to 60°.
 (𝛾𝛾, 𝛾𝛾′) data from Cologne group to identify 

𝐽𝐽 = 𝐸 states up to 8.5 MeV.
 𝐽𝐽𝜋𝜋 = 𝐸− states populated through 𝑙𝑙 = 2 transfers 

in (d,p) from 𝐽𝐽𝜋𝜋 = 3/2− ground state of 61Ni.
[MS et al., submitted for publication (2023)]
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Results for possible PDR states populated in 61Ni(d,p)62Ni

 Intensity ratios from 62Ni(γ,γ’) were used to 
identify 𝐽𝐽 = 𝐸 states up to 8.5 MeV.

[T. Schüttler, M. Müscher, A. Zilges, et al.]
 17 𝐽𝐽𝜋𝜋 = 𝐸− candidates populated in 61Ni(d,p)62Ni 

through 𝑙𝑙 = 2 angular momentum transfers.

→ No 𝑙𝑙 = 0 transfers were observed below Sn!
→ Consequently, if E1 strength increases further in 

62Ni (N=34) and if Inakura’s predictions are 
correct, then (2p3/2)-1(2d5/2)+1 and (2p3/2)-1(2d3/2)+1

need to be responsible for the strength increase.

 62Ni(γ,γ’) up to threshold will show whether 
strength increases further and whether more 1-

states, populated in (d,p) and (γ,γ’), can be 
identified.

 Detailed theoretical calculations will then be 
needed (LSSM, SSRPA, RQTBA+PVC, QPM, …).[MS et al., submitted for publication (2023)]
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Conclusions

 One-nucleon transfer experiments [here (d,p)] can provide important information 
on the microscopic components of the PDR wave functions.

→ Getting these microscopic components right is critical to understand the 
generation of low-lying E1 strength and to predict it correctly.

→ Incorrect nuclear structure might lead to incorrect E1 distribution (γSF) and, 
thus, (maybe) incorrect predictions for (n,γ) rates.

→ PDR E1 strength seems to be intimately connected to certain 1p-1h structures. 
→ Immediate question: Is the PDR only a part of the ground-state γSF?

 Different stable-beam facilities (e.g., UoC, iThemba, RCNP, FSU, TU Darmstadt, 
HZ Dresden-Rossendorf, HIγS, ELI-NP) allow to continue the detailed structure 
studies of the PDR across the nuclear chart in “conventional” experiments.

 FRIB, RIKEN, FAIR, HIE-ISOLDE give access to more neutron-rich nuclei.
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Commissioning of CeBrA demonstrator for particle-γ coincidence experiments

Coincidence timing between CeBr3 γ-ray 
detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. 
To eliminate random background, further timing gates are 
needed.

(d,p)

(d,d’)

(d,t)
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Commissioning of CeBrA demonstrator for particle-γ coincidence experiments
49Ti(d,pγ)50Ti coincidence matrix

With prompt timing correlation gate.

O
ut

lo
ok



39

Collective or not? Universal mode? Other multipolarities present?

 Open question: Is there are quadrupole-
type oscillation of the neutron skin?

→ Has been controversially discussed!
Not many experimental and theoretical 
studies exist [to my knowledge].
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What else can we expect in this session?
O

ut
lo

ok

The 2nd published 
(d,p) study of the PDR

Accessing the PDR’s 
single-particle structure in 

another mass region.

More on the Ni isotopes 
and B(E1) strength 

beyond N=28

A way to access neutron 
2p-2h configurations?

Evolution of PDR with 
neutron excess and 

experiments with rare 
isotope beams



41

Conclusions

 One-nucleon transfer experiments [here (d,p)] can provide important information 
on the microscopic components of the PDR wave functions.

→ Getting these microscopic components right is critical to understand the 
generation of low-lying E1 strength and to predict it correctly.

→ Incorrect nuclear structure might lead to incorrect E1 distribution (γSF) and, 
thus, (maybe) incorrect predictions for (n,γ) rates.

→ PDR E1 strength seems to be intimately connected to certain 1p-1h structures. 
→ Immediate question: Is the PDR only a part of the ground-state γSF?

 Different stable-beam facilities (e.g., UoC, iThemba, RCNP, FSU, TU Darmstadt, 
HZ Dresden-Rossendorf, HIγS, ELI-NP) allow to continue the detailed structure 
studies of the PDR across the nuclear chart in “conventional” experiments.

 FRIB, RIKEN, FAIR, HIE-ISOLDE give access to more neutron-rich nuclei.





207Pb(d,p)208Pb
[backup]



Claimed to be 1p-1h excitations and not PDR!
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PDR or 1p-1h? The case of 208Pb

[N. Ryezayeva et al., PRL 89, 272502 (2002) and  I. Poltoratska et al., PRC 85, 041304(R) (2012)]

Our picture of a possible unique mode has changed since. Lower energy part, which is 
also observed in (α,α’), is considered to feature signatures of a possible neutron-skin 
mode. Higher lying excited states have a more complex structure (+2p-2h, …).
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Q3D at MLL (Garching, Germany): (p,p’)IAR, (d,d’) and (d,p) for 208Pb

[Focal plane detector: H.F. Wirth, Dissertation, TU München (2001)]

 Excellent particle-energy resolution:
∆E/E = 2 × 10-4 (6 keV @ Ed= 22 MeV)

 Spatial resolution of focal-plane detector:
3.5 mm repetition length, 255 cathode strips (length: 0.9 m)
→ half of the focal plane

 Low background due to coincidence requirements between anode and scintillator 
signals (∆𝑡𝑡 ≤ 𝐸𝜇𝜇𝑠𝑠) and additional offline cuts

[January – March 2018 issue]

( Facility closed)
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All firm 1- states
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IV strengths: Cancellation effects in PDR region (LSSM; B.A. Brown)

This result is in agreement with earlier findings 
by X. Roca-Maza et al. [PRC 85, 024601 (2012)]
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The effect of excluding certain E1 matrix elements
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