Shape changes, quadrupole collectivity and configuration inversions along $\mathrm{N}=\mathrm{Z}$

Francesco Recchia, Jeongsu Ha University and INFN Padova and the el9034 Collaboration

Development of deformation at $\mathrm{N}=8,20,40$

- Magic numbers - energy gaps in the spherical mean field To promote particles above the Fermi levels costs energy
- Some intruders configurations can overwhelm their loss of monopole energy with their huge gain in correlation energy
- Several examples of this phenomenon exist in stable magic nuclei (as in ${ }^{40} \mathrm{Ca}$ nucleus) in the form of coexisting spherical, deformed and superdeformed states in a very narrow energy range
- In exotic nuclei the effective nuclear interaction weight very differently proton and neutron interaction than they do at the stability line. Therefore leading in some cases to the vanishing of established shell closures or to theappearance of new ones

Physics Motivation

> $\mathrm{N}=\mathrm{Z}$ nuclei play a special role

- (np) collectivity by the proton-neutron interaction
> spatial overlap of their respective wave functions at the Fermi surface
$>$ proton and neutrons act coherently.
- Competing isoscalar np pairing and normal isovector ($\mathrm{T}=\mathrm{I}, \mathrm{I}=0$) pairing modes
> a nuclear superfluid analogous to "Cooper Pairs" may exists in nuclei
$>$ Isoscalar predicted prominent in the ground states of heavier (A > 76) $\mathrm{N}=\mathrm{Z}$ nuclei
$>$ Difficult to find a smoking gun signature
$>$ shell-model predict that isoscalar pairing enhances collectivity \rightarrow measurements of $B(E 2)$

Physics Motivation

- The self-conjugate $N=Z$ nuclei - Proton-neutron correlations: role of np-pairing, ...
- Schematic way to understand the phenomena: Nilsson SU3 scheme,
- A significant shape change has been anticipated among the medium-mass nuclides
\rightarrow Competition between shapes is expected

Physics Motivation

Nilsson-SU3 self-consistency in heavy $N=Z$ nuclei

A. P. Zuker, ${ }^{1}$ A. Poves, ${ }^{2,3}$ F. Nowacki, ${ }^{1}$ and S. M. Lenzi ${ }^{4}$

"quadrupole degrees of freedom as the backbone of nuclear strucłure, which in shell-model language translates as dominance of the quadrupole force"

Along N=Z at the NSCL facility

$>{ }^{7} 2 \mathrm{Kr}$
$>$ First GRETINA campaign 2013-14

- H. Iwasaki eł al. Phys. Rev. Lett. 112, 142502 (2014)
$>$ 74Rb: A. Lemasson
- ${ }^{76} \mathrm{Sr}$
- Lasł SEGA campign ~2010
- A. Lemasson Phys Rev C 85, 0041303(R) (2012)
> 78Y: R.D.O. Llewellyn
- 80Zr
- Last GRETINA campaign at NSCL 2019-20
- R. D. O. Llewellyn et al. Phys. Rev. Lett. 124, 152501 (2020)

Experiment at NSCL, Michigan

Performed in July 2020
Lifetime measurement for the low-lying states in ${ }^{84} \mathrm{Mo}$ and its vicinity GRETINA HPGe array

84Mo, $45 \mathrm{MeV} / \mathrm{U}$
(+ other nuclides)

92Mo Primary
Beam, $140 \mathrm{MeV} / \mathrm{U}$

Production
Target
Francesco Recchia - University of Padova

Secondary beams: fragmentation

fragment yield after target

- Identification event-by-event
- B - Rho
\downarrow TOF
fragment yield at focal plane

Gamma Ray Energy Tracking Array

GREIA: 4π array of 120 HPGe detectors with 36 segments each (USA)
AGATA:
Advanced
GAmma Tracking Array in Europe

Francesco Recchia - University of Padova

In-beam lifetime measurements

- excited states produced in the target decay in flight
- measure distance instead of time
- place a stopper a certain distance after the target
- two components to the spectrum: shifted (in-flight) and stopped

In-beam lifetime measurements .. with radioactive beams

- the beam intensity is low, beam time is scarce
- use a degrader instead of a stopper \rightarrow residual nucleus can be identified event by event
- two different emission velocities, łwo peaks in spectrum
- Variations over distances to adapt to the lifetime(s) of interest

The experiment at NSCL

GRETINA was coupled to the plunger TRIple PLunger for EXotic beams (TRIPLEX)

- With a secondary target, the TRIPLEX plunger can hold up to two degrader foils which facilitate to extract the lifetime from a single measurement

Detector

H. Iwasaki et al., Nuclear Inst. and Methods in Physics Research A 806, 123 (2016)

- short lifetime of 4^{+}state in 72 Kr
- large B(E2; $\left.4^{+} \rightarrow 2^{+}\right)$
- shape transition next to the g.s.
- oblate ground state,
- prolate for higher spins as suggested by LNL experiment that measured level spacing in 1997

Lifetimes extracted from lineshapes $\quad 14$

 for ${ }^{80} \mathrm{Zr}$ and ${ }^{78} \mathrm{Y}$- Very large quadrupole deformation
- Maximum along $\mathrm{N}=\mathrm{Z}$

Francesco Recchia - University of Padova

Physics Motivation

- Along $N=Z$: shape change from oblate $\left({ }^{64} \mathrm{Ge},{ }^{68} \mathrm{Se}\right)$ to prolate around ${ }^{72 \mathrm{Kr}}$
- Large deformation continues up to 80 Zr
- Then prolate or oblate? ?
- Shell model predictions for ${ }^{84} \mathrm{Mo}$:
- with fpg model space (JUN45): oblate, $\tau\left(2_{1}^{+}\right)=75$ ps
with fpgd model space (LNPS): prolate , $\tau\left(2_{1}^{+}\right)=43$ ps

R. D. O. Llewellyn et al., Phys. Rev. Lett. 124, 152501 (2020)

Objectives

- Measurement of the lifetime of the first $\underline{2}^{+}$state in ${ }^{84} \mathrm{Mo}$ populated by two-neutron knockout from ${ }^{86} \mathrm{Mo}$.
- Measurement of the lifetime of the first $\underline{2^{+}}$state in ${ }^{86} \mathrm{Mo}$ using inelastic scattering: ${ }^{86} \mathrm{Mo}\left({ }^{(} \mathrm{Be},{ }^{9} \mathrm{Be}\right)^{86} \mathrm{Mo}{ }^{*}$
- Understanding the collectivity, shape, of ${ }^{86} \mathrm{Mo}$ and ${ }^{84} \mathrm{Mo}$ by comparing to the shell model calculation

Incoming PID

[Selection of the incoming beam]

${ }^{86} \mathrm{Mo}$ was
of incoming beam

Analysis

[Outgoing beam PID plot for incoming ${ }^{86} \mathrm{Mo}$ beam]

Secondary Target (${ }^{9} \mathrm{Be}, 1.325 \mathrm{~mm}$)

Comparison to full Monte Carlo

- The spatial and energy distribution of the secondary beam are reproduced in the simulation
- Strong direct population to 2^{+}
- Residual population to 4^{+}states that decays by a fast transition

$B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$along $\mathrm{N}=\mathrm{Z}$

${ }^{86} \mathrm{Mo}$

- First 2^{+}state in ${ }^{84} \mathrm{Mo}$ understandable in terms of prolate deformation
- Inclusion of $d_{5 / 2}$ is needed - lifetime shorter than expected quadrupole correlations

Discussion with ZBM3

\square The shell model calculation with ZBM3 ($r 3 g d s$ model space)
The $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$calculation shows consistency for $N=Z$ and $N=Z+2$ nuclides

Discussion with ZBM3

- Generator cohordinate method - check where w.f. falls in the potential energy surface

The $\beta-\gamma$ plane for ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$ show triaxial ground-state shapes
\square Soft potential surface towards oblate shapes for both ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$

- Transition between ${ }^{76} \mathrm{Sr},{ }^{80} \mathrm{Zr}$ and less deformed $\mathrm{N}=\mathrm{Z}$ toward ${ }^{100} \mathrm{Sn}$

Francesco Recchia - University of Padova

Island of deformation at the $N=Z$ line

- Zuker-Retamosa-Poves scheme based on SU_{3} symmetry
- $\boldsymbol{\pi}$ and \boldsymbol{v} takes the configuration that maximize quadrupole deformation
- Most deformed cases for ${ }^{76} \mathrm{Sr}, 80 \mathrm{Zr}$
- Detailed analysis: we can force a limited number of p-h excitations
- Shape transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$

nucleus	Np-Nh*	ZRP
${ }^{84} \mathrm{Mo}$	$4 \mathrm{p}-4 \mathrm{~h}$	1104
	$8 \mathrm{p}-8 \mathrm{~h}$	1891
	$0 \mathrm{p}-0 \mathrm{~h}$	542
	$2 \mathrm{p}-2 \mathrm{~h}$	1030
${ }^{86} \mathrm{Mo}$	$4 \mathrm{p}-4 \mathrm{~h}$	1416
	$6 \mathrm{p}-6 \mathrm{~h}$	1858

Conclusion 1/2

Advanced RIB Facilities and instrumentation allow progress

Measure collectivity by $\mathrm{B}(\mathrm{E} 2)$ along $\mathrm{N}=\mathrm{Z}$
New challenges for theoretical description of the $B(E 2)$ measured in the center of the $g_{9 / 2}$ shell
Quadrupole correlations beyond expectations; possible triaxiality... calculation still in progress

Shell model description: new region of deformation and sharp transition between ${ }^{84} \mathrm{Mo}$ and ${ }^{86} \mathrm{Mo}$

Conclusion 2/2

Limit of present facilities is reached. Looking forward for the new ones

Heavier nuclei along N=Z: ${ }^{88 R U},{ }^{92 P d}$, ${ }^{96} \mathrm{Cd}$ odd-odd nuclides ($\left.{ }^{82} \mathrm{Nb},{ }^{86} \mathrm{Tc}, . ..\right)$ shape competition and coexistence

ONLY POSSIBLE THANKS TO:
Jeongsu Ha
Pablo Aguilera
Sara Carollo

WITH CALCULATIONS BY:
F. Nowacki
D. D. Dao
A. Poves
S. Lenzi

THE FULL NSCL COLLABORATION IS ACKNOWLEDGED

Generator Coordinate Method: $\left|\Psi_{\text {eff }}\right\rangle=\sum_{i} f_{i}\left|\phi_{i}\right\rangle$

1) Deformed Hartree-Fock (HF) Slater determinants
2) Restoration of rotational symmetry
3) Mixing of shapes:

Basis Truncation Method

? choice of relevant deformed Hartree-Fock states

- E. Caurier's Minimization Technique:
(E. Caurier, Proc. on GCM, BLG report 484 (1975))

\diamond Based on the variational principle
\diamond Minimization of the energy of given states $\left\{J^{\pi}\right\}$

$$
\begin{aligned}
& \begin{array}{cccc}
-1.08 \\
\mathbf{K}=3 / 2 & -1.41 & -1.41 & \begin{array}{c}
-1.08 \\
\mathbf{- C - 6}
\end{array} \\
\mathrm{~K}=3 / 2
\end{array} \\
& \begin{array}{cc}
-5.06 & \overbrace{-5}^{-5.06} \\
K=1 / 2 & K=1 / 2
\end{array}
\end{aligned}
$$

