Shape changes, quadrupole collectivity and configuration inversions along N = Z

<u>Francesco Recchia, Jeongsu Ha</u> University and INFN Padova <u>and the e19034 Collaboration</u>

Development of deformation at N=8,20,40

- Magic numbers energy gaps in the spherical mean field To promote particles above the Fermi levels costs energy
- Some <u>intruders configurations</u> can overwhelm their loss of monopole energy with their <u>huge gain in correlation</u> <u>energy</u>
- Several examples of this phenomenon exist in stable magic nuclei (as in ⁴⁰Ca nucleus) in the form of <u>coexisting spherical, deformed and superdeformed</u> states in a very narrow energy range
- In exotic nuclei the effective nuclear interaction weight very differently proton and neutron interaction than they do at the stability line. Therefore leading in some cases to the vanishing of established shell closures or to theappearance of new ones

Physics Motivation

- N = Z nuclei play a special role
 - (np) collectivity by the proton-neutron interaction
 - spatial overlap of their respective wave functions at the Fermi surface
 - proton and neutrons act coherently.
- Competing isoscalar np pairing and normal isovector (T = 1, I = 0) pairing modes
 - a nuclear superfluid analogous to "Cooper Pairs" may exists in nuclei
 - Isoscalar predicted prominent in the ground states of heavier (A > 76) N = Z nuclei
 - Difficult to find a smoking gun signature
 - ► shell-model predict that isoscalar pairing enhances collectivity → measurements of B(E2)

Physics Motivation

 $\Box \quad \text{The self-conjugate } N = Z \text{ nuclei}$

. . .

- Proton-neutron correlations: role of np-pairing, ...
- Schematic way to understand the phenomena: Nilsson SU3 scheme,

- A significant shape change has been anticipated among the medium-mass nuclides
 - $\rightarrow \underline{\text{Competition between shapes is}}$ $\underline{\text{expected}}$

Physics Motivation

"quadrupole degrees of freedom as the backbone of nuclear structure, which in shell-model language translates as dominance of the quadrupole force" 5

PHYSICAL REVIEW C 92, 024320 (2015)

Nilsson-SU3 self-consistency in heavy N = Z nuclei

A. P. Zuker,¹ A. Poves,^{2,3} F. Nowacki,¹ and S. M. Lenzi⁴

Francesco R

Along N=Z at the NSCL facility

► ⁷²Kr

- First GRETINA campaign 2013-14
- H. Iwasaki et al. Phys. Rev. Lett. 112, 142502 (2014)
- ▶ ⁷⁴Rb: A. Lemasson
- ► ⁷⁶Sr
 - Last SEGA campign ~2010
 - A. Lemasson Phys Rev C 85, 0041303(R) (2012)
- ▶ ⁷⁸Y: R. D. O. Llewellyn
- ► ⁸⁰Zr
 - Last GRETINA campaign at NSCL 2019-20
 - R. D. O. Llewellyn et al. Phys. Rev. Lett. 124, 152501 (2020)

Francesco Recchia – University o

Experiment at NSCL, Michigan

Performed in July 2020 Lifetime measurement for the low-lying states in ⁸⁴Mo and its vicinity **GRETINA HPGe array**

Secondary beams: fragmentation

8

Gamma Ray Energy Tracking Array

GRETA: 4π array of 120 HPGe detectors with 36 segments each (USA)

AGATA: Advanced GAmma Tracking Array in Europe

O

In-beam lifetime measurements

- excited states produced in the target decay in flight
- measure distance instead of time
- place a stopper a certain distance after the target
- two components to the spectrum: shifted (in-flight) and stopped

10

In-beam lifetime measurements .. with radioactive beams

- the beam intensity is low, beam time is scarce
- use a degrader instead of a stopper -> residual nucleus can be identified event by event
- two different emission velocities, two peaks in spectrum
- Variations over distances to adapt to the lifetime(s) of interest

The experiment at NSCL

12

GRETINA was coupled to the plunger TRIple PLunger for EXotic beams (TRIPLEX)
With a secondary target, the TRIPLEX plunger can hold up to two degrader foils which facilitate to extract the lifetime from a single measurement

Lifetimes in ⁷²Kr : competition of deformations

13

- short lifetime of 4⁺ state in ⁷²Kr
 - large B(E2; $4^+ \rightarrow 2^+$)
- shape transition next to the g.s.
 - oblate ground state,
 - prolate for higher spins as suggested by LNL experiment that measured level spacing in 1997

Lifetimes extracted from lineshapes for ⁸⁰Zr and ⁷⁸Y $E(2^+)$ τ $\tau_{mev.l}$

 Very large quadrupole deformation

 Maximum along N=Z

14

Physics Motivation

- Along N = Z: shape change from oblate (⁶⁴Ge, ⁶⁸Se) to prolate around ⁷²Kr
- Large deformation continues up to ⁸⁰Zr
- Then prolate or oblate??
- ► Shell model predictions for ⁸⁴Mo:
- with **fpg** model space (JUN45): oblate, $\tau(2_1^+) = 75$ ps
- with **fpgd** model space (LNPS): prolate , $\tau(2_1^+) = 43$ ps

R. D. O. Llewellyn et al., Phys. Rev. Lett. **124**, 152501 (2020)

Objectives

- Measurement of the lifetime of the first <u>2⁺ state in</u> <u>⁸⁴Mo</u> populated by two-neutron knockout from ⁸⁶Mo.
- Measurement of the lifetime of the first 2⁺ state in <u>86Mo</u> using inelastic scattering: 86Mo(9Be, 9Be)86Mo*
- Understanding the collectivity, shape, of ⁸⁶Mo and ⁸⁴Mo by comparing to the shell model calculation

Incoming PID

[Selection of the incoming beam]

17

OBJ - E1 Time of flight (arb.)

Analysis

E1,E2,E3 Scintillators

S800

Comparison to full Monte Carlo

19

- The spatial and energy distribution of the secondary beam are reproduced in the simulation
- Strong direct population to 2⁺
 - Residual population to 4⁺ states that decays by a fast transition

$B(E2; 2_1^+ \rightarrow 0_1^+)$ along N=Z

- First 2⁺ state in ⁸⁴Mo understandable in terms of prolate deformation
- Inclusion of d_{5/2} is needed lifetime shorter than expected quadrupole correlations
 Francesco Recchia – University of Padova

Discussion with ZBM3

The shell model calculation with ZBM3 (r3gds model space)

□ The $B(E2; 2_1^+ \rightarrow 0_1^+)$ calculation shows consistency for N = Z and N = Z + 2 nuclides

A. P. Zuker, A. Poves, F. Nowacki, and S. M. Lenzi, Phys. Rev. C **92**, 024320 (2015) A. P. Zuker, B. Buck, and J. B. McGrory, Phys. Rev. Lett. **21**, 39 (1968)

Discussion with ZBM3

- Generator cohordinate method check where w.f. falls in the potential energy surface
- □ The $\beta \gamma$ plane for ⁸⁴Mo and ⁸⁶Mo show triaxial ground-state shapes
- □ Soft potential surface towards oblate shapes for both ⁸⁴Mo and ⁸⁶Mo
- □ Transition between ⁷⁶Sr, ⁸⁰Zr and less deformed N=Z toward ¹⁰⁰Sn

Island of deformation at the N=Z line

Zuker-Retamosa-Poves scheme based on SU₃ symmetry

- $\blacktriangleright \ \pi \ \mbox{and} \ \nu$ takes the configuration that maximize quadrupole deformation
- Most deformed cases for ⁷⁶Sr, ⁸⁰Zr
- Detailed analysis: we can force a limited number of p-h excitations

Shape transition between ⁸⁴Mo and ⁸⁶Mo

Francesco Recchia – University of Padova

 $\frac{56}{28}\mathbf{Ni}_{28}$

Conclusion 1/2

- Advanced RIB Facilities and instrumentation allow progress
 - Measure collectivity by B(E2) along N=Z
 - New challenges for theoretical description of the B(E2) measured in the center of the g_{9/2} shell
 - Quadrupole correlations beyond expectations; possible triaxiality... calculation still in progress
 - Shell model description: new region of deformation and sharp transition between ⁸⁴Mo and ⁸⁶Mo

Conclusion 2/2

Limit of present facilities is reached. Looking forward for the new ones

- Heavier nuclei along N=Z: ⁸⁸Ru, ⁹²Pd, ⁹⁶Cd
- odd-odd nuclides (⁸²Nb, ⁸⁶Tc, ...) shape competition and coexistence

ONLY POSSIBLE THANKS TO: Jeongsu Ha Pablo Aguilera Sara Carollo

WITH CALCULATIONS BY: F. Nowacki D. D. Dao A. Poves S. Lenzi

THE FULL NSCL COLLABORATION IS ACKNOWLEDGED

Generator Coordinate Method: $|\Psi_{eff}\rangle = \sum_{i} f_{i} |\Phi_{i}\rangle$

- 1) Deformed Hartree-Fock (HF) Slater determinants
- 2) Restoration of rotational symmetry
- 3) Mixing of shapes:

Basis Truncation Method

choice of relevant deformed Hartree-Fock states

- E. Caurier's Minimization Technique:
- (E. Caurier, Proc. on GCM, BLG report 484 (1975))

- ◊ Based on the variational principle
- Minimization of the energy of given states $\{J^{\pi}\}$

Courtesy of F. Nowacki

ZRP w/ ZBM interaction

A. P. ZUKER, B. BUCK, AND J. B. MCGRORY, PHYS. REV. LETT. 21, 39 (1968);