Giant Pairing Vibration in the Continuum Beyond RPA

F. Barranco

Sevilla University

E. Vigezzi

INFN Milano

G. Potel

Livermore National Laboratory

PID2020-114687GB-100

The Giant Pairing Vibration seminal paper

Volume 69B, number 2

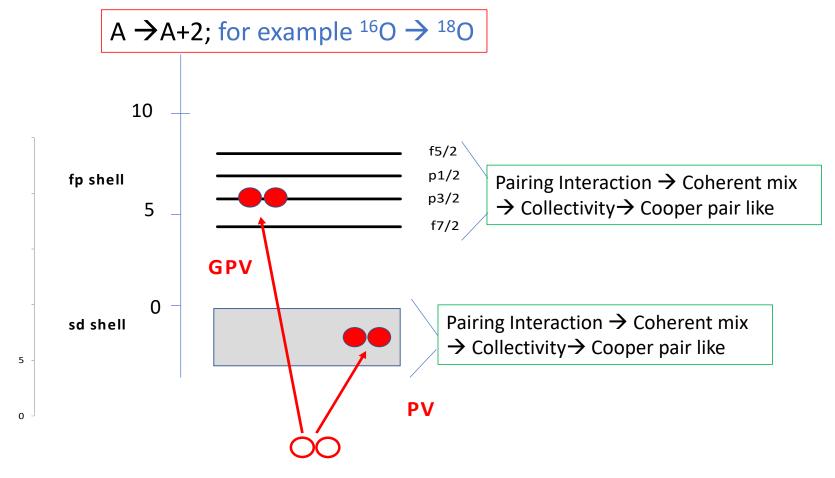
PHYSICS LETTERS

1 August 1977

HIGH-LYING PAIRING RESONANCES*

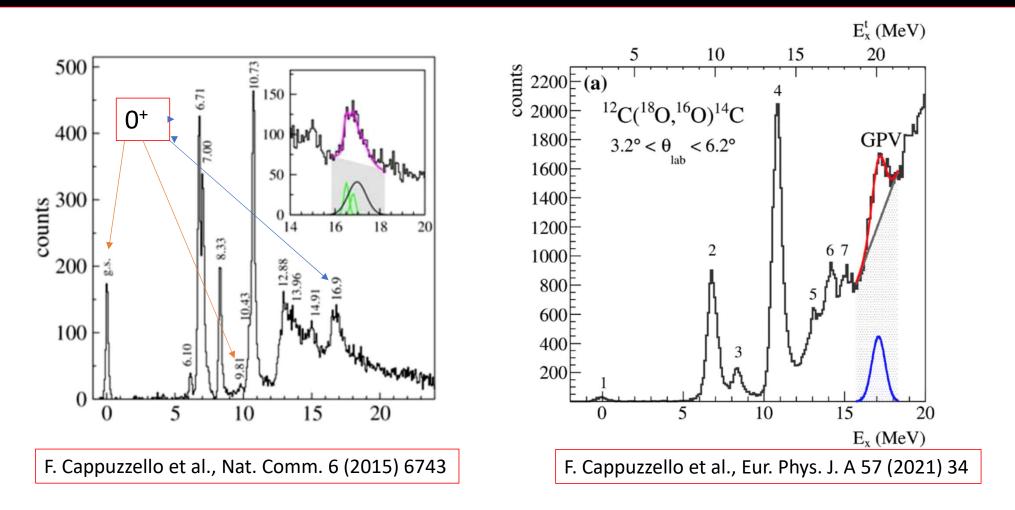
R.A. BROGLIA

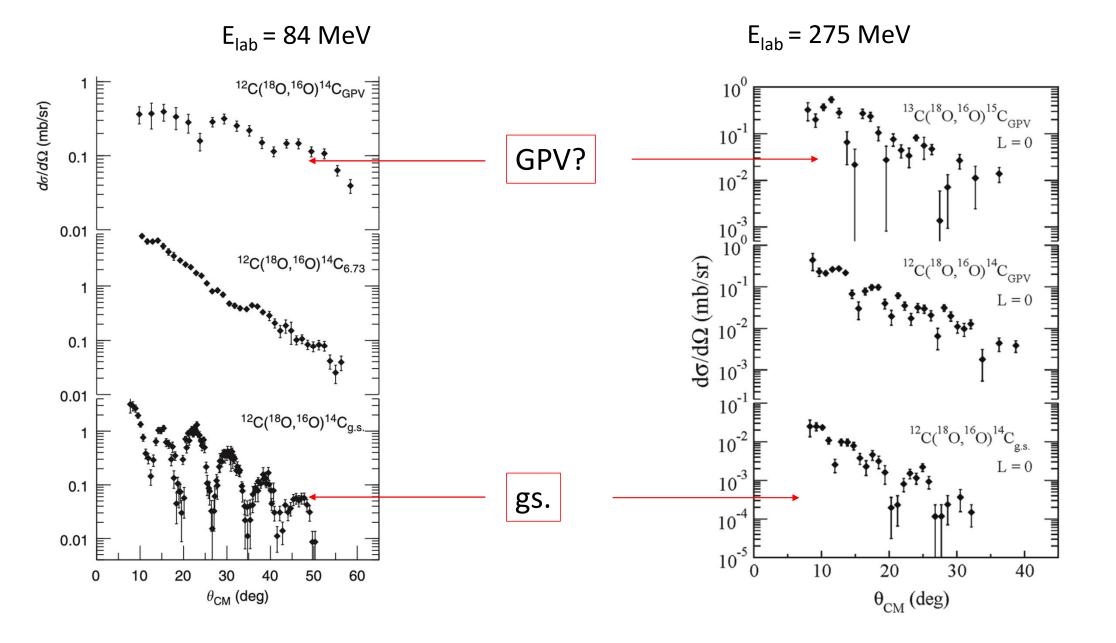
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark¹ State University of New York, Department of Physics, Stony Brook, New York 11794, USA

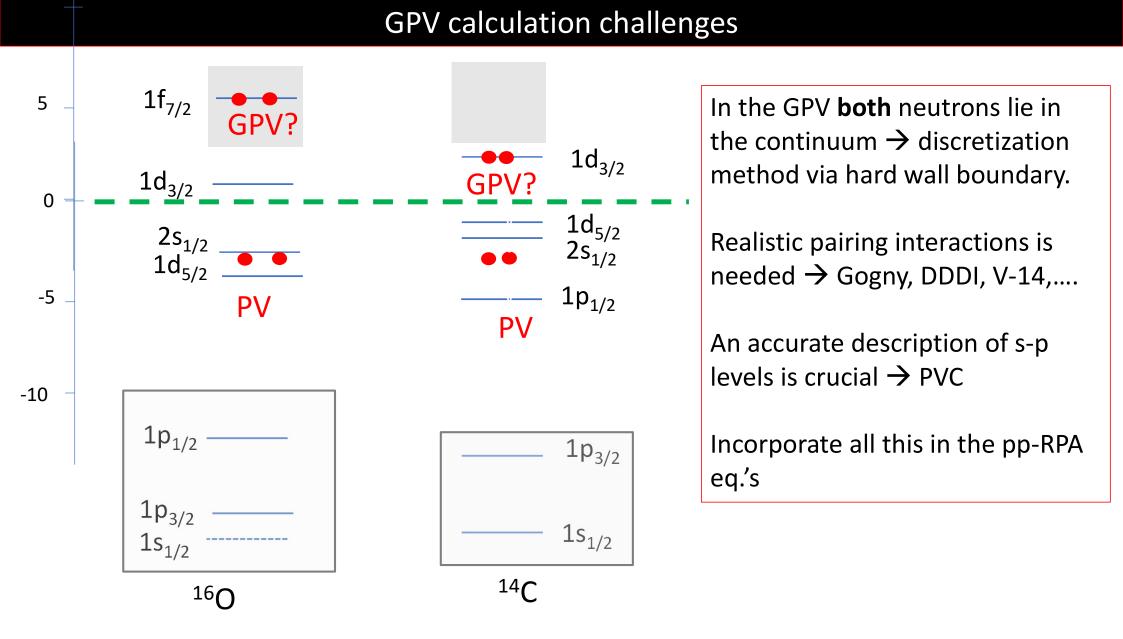

and

D.R. BES² NORDITA, DK-2100 Copenhagen Ø, Denmark

Received 1 April 1977


Pairing vibrations based on the excitation of pairs of particles and holes across major shells are predicted at an excitation energy of about $70/A^{1/3}$ MeV and carrying a cross section which is 20%-100% the ground state cross section.


The Pairing Vibrations; schematics



Pair Addition mode produced in two neutron transfer reactions: A(t,p)A+2 for example

Several unsuccessful experimental searches have been carried out over the years , but recently a bump has been detected at $E^* \approx 16$ MeV in the reaction ${}^{12}C({}^{18}O,{}^{16}O){}^{14}C$ at $E_{lab} = 84$ and 275 MeV and intepreted as a signature of GPV

Basic Tool: The pp-RPA equations

$$|A+2,\tau\rangle = \left(\sum_{m

$$\left(\begin{pmatrix} A & B \\ B^{+} & C \end{pmatrix} \begin{pmatrix} R_p^{\tau,\lambda} \\ R_h^{\tau,\lambda} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} R_p^{\tau,\lambda} \\ R_h^{\tau,\lambda} \end{pmatrix} \cdot \hbar\Omega_{\tau,\lambda},$$

$$\begin{array}{l} \text{max} a_n^{\tau} = \delta_{mm'}\delta_{nn'}(\epsilon_m + \epsilon_n) + \bar{v}_{mnm'n'}, \\ C_{iji'j'} = -\delta_{ii'}\delta_{jj'}(\epsilon_i + \epsilon_j) + \bar{v}_{iji'j'}, \\ B_{mnij} = -\bar{v}_{mnij}, \end{array} \qquad \begin{array}{l} (R_p^{\tau})_{ij} = Y_{ij}^{\tau}, \\ (R_h^{\tau})_{ij} = Y_{ij}^{\tau}, \\ (R_h^{\tau})_{ij} = Y_{ij}^{\tau}, \\ \end{array}$$$$

1

From The Nuclear Many Body Problem by Ring and Schuck

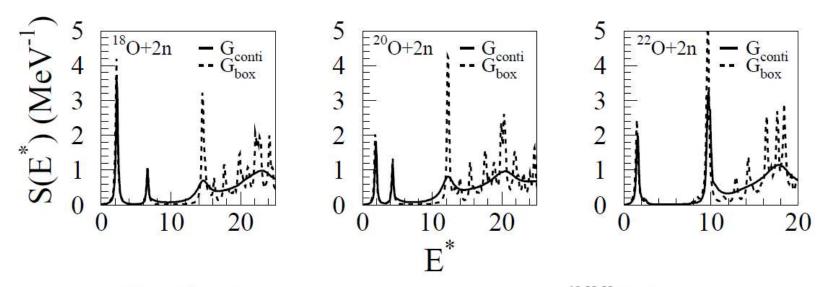
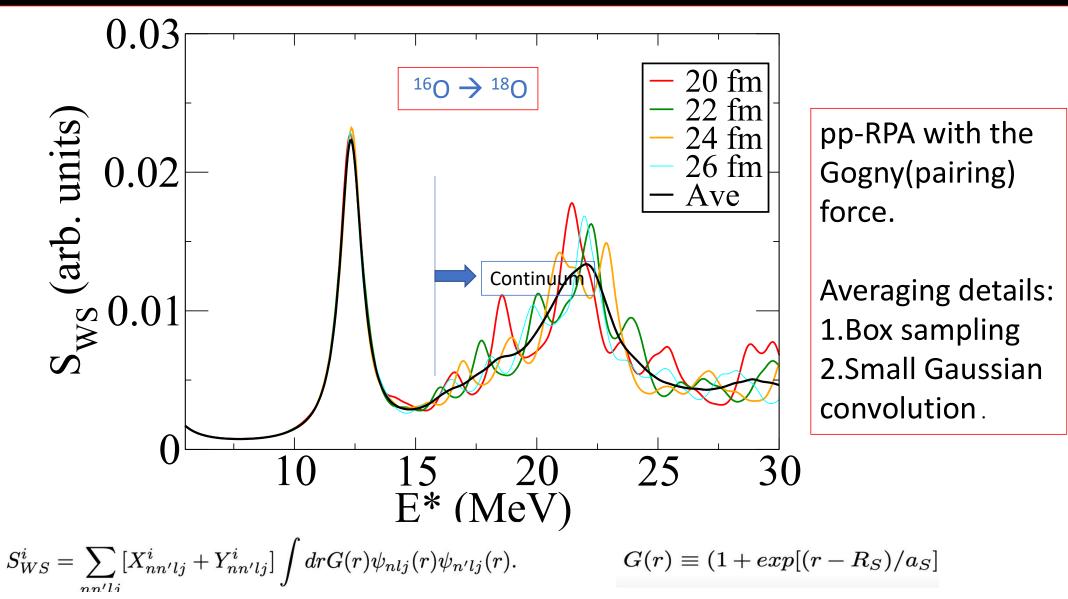
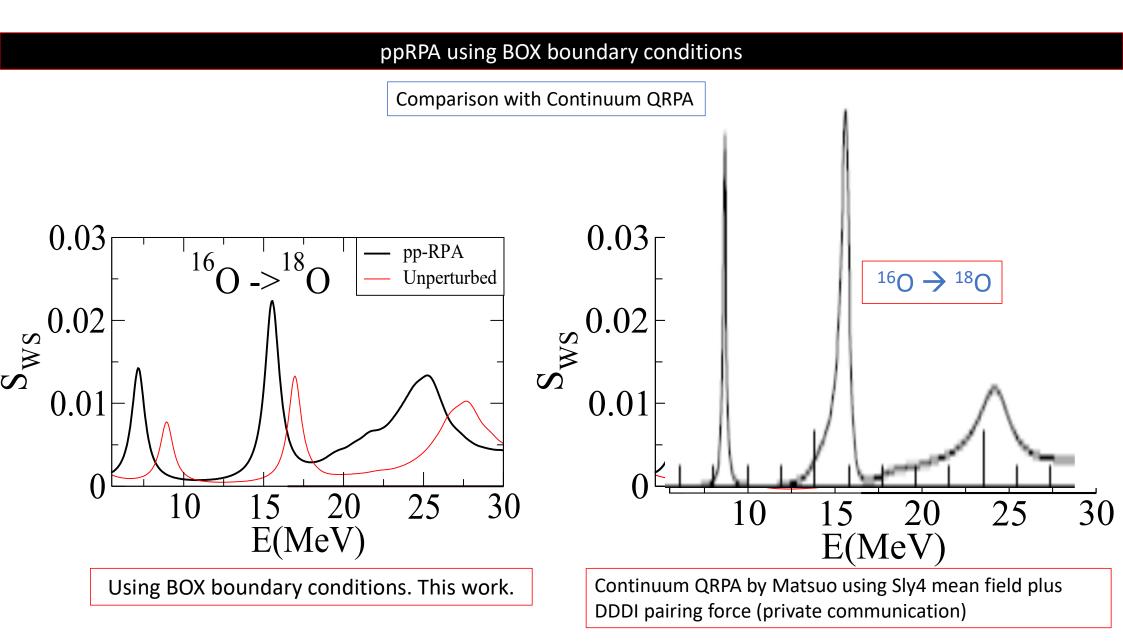
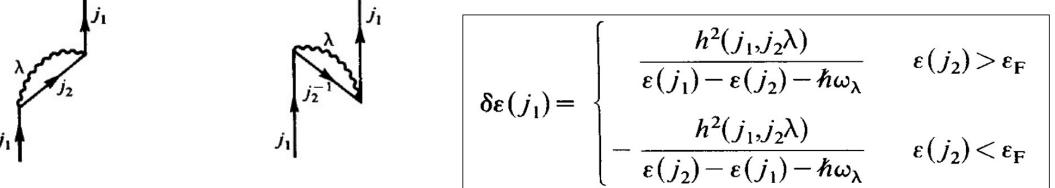




FIG. 1. The QRPA response for the two-neutron transfer on 18,20,22 O. The exact continuum calculations are in solid lines whereas the calculations with box boundary conditions are in dashed lines. The results are displayed as functions of E^{*}, the excitation energy with respect to the parent nucleus ground state. Rbox = 22.5 fm

E. Khan et al PRC69 (2004) 014314



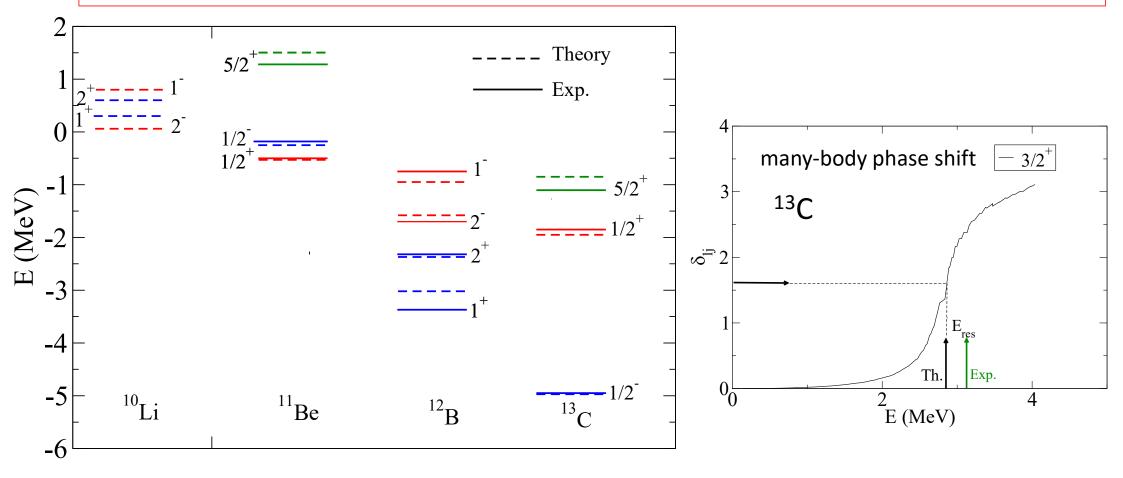
ppRPA using BOX boundary conditions

Position of the Single Particle Levels and NFT/PVC: Self-energy

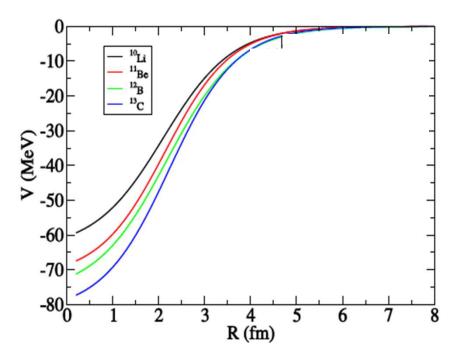
We will not use a "standard" mean field but a new one fitted on data after including beyond mean field

 λ^{π} : 2⁺ most relevant

Part of the S-P strength goes to the intermediate state-> Fragmentation

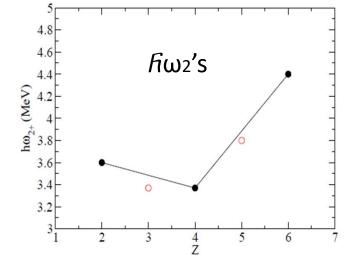

PVC vertex

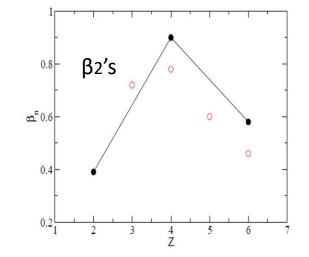
$$h(j_1, j_2\lambda) \equiv \langle j_2, n_\lambda = 1; I = j_1, M = m_1 | H' | j_1 m_1 \rangle$$

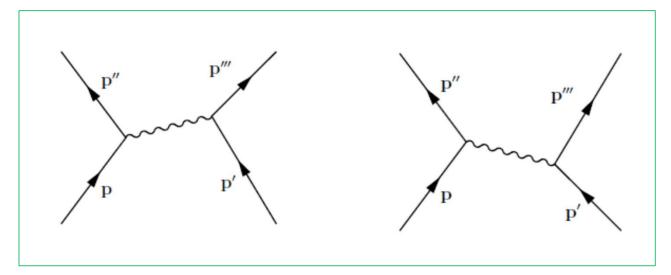

$$= (-1)^{j_1+j_2} (2j_1+1)^{-1/2} (2\lambda+1)^{-1/2} \langle j_2 \| k_{\lambda} Y_{\lambda} \| j_1 \rangle \langle n_{\lambda} = 1 \| \alpha_{\lambda} \| n_{\lambda} = 0 \rangle$$

Position of the Single Particle Levels and NFT/PVC: Self-energy

Many-body states in N=7 isotones arising from quadrupole coupling with single-particle states calculated in a common mean-field potential




Position of the Single Particle Levels and NFT/PVC: Self-energy

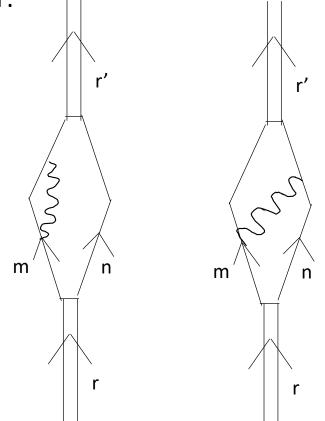


 V_{WS} =-82+54(N-Z)/A *MeV* a = 0.75 *fm;* R_{WS}=0.99A^{1/3} *fm* V_{LS} =0.0082V_{WS} Bare mean field potential for N=7 isotones

Extended Role of Vibrations in the PV and GPV: The Phonon Exchange Induced Interaction, V^{ind}

$$V^{ind}_{pp'p''p'''p'''} = \sum_{\lambda\nu} \left[\frac{h_{pp''\lambda\nu}h_{p'''p'\lambda\nu}}{E - (\epsilon^{emp}_{p''} + \epsilon^{emp}_{p'} + \hbar\omega_{\lambda\nu})} + \frac{h_{p''p\lambda\nu}h_{p'p'''\lambda\nu}}{E - (\epsilon^{emp}_{p} + \epsilon^{emp}_{p'''} + \hbar\omega_{\lambda\nu})} \right]$$

Present in every nucleus!!

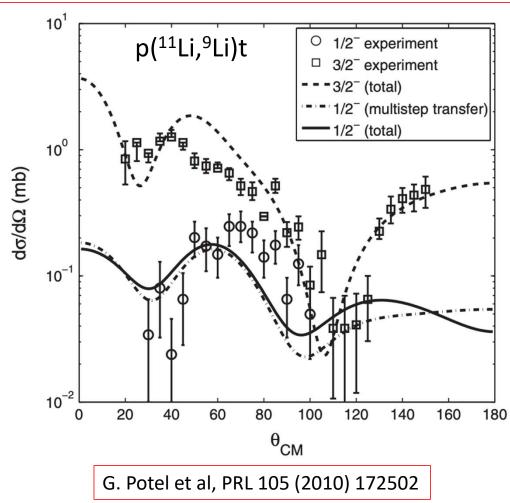

As a consequence: pairing V^{bare}(p,p';p'',p''') must leave room to V^{ind} \rightarrow reduced V^{bare} by 20%

$$\begin{pmatrix} A_{pp'p''p'''} & B_{pp'h''h'''} \\ B_{p''p'''hh'} & \neg A_{hh'h''h'''} \end{pmatrix} \begin{pmatrix} X_{p''p'''} \\ Y_{h''h'''} \end{pmatrix} = \mathcal{E} \begin{pmatrix} X_{pp'} \\ Y_{hh'} \end{pmatrix}$$

Incorporating Self-energy and Induced Interaction

$$\begin{split} A_{pp'p''p''p'''} &= \left[(\epsilon_p + \epsilon_{p'}) + \sum_{pp''(p')} (E) \delta_{p'p'''} + \sum_{p'p''(p)} (E) \delta_{pp''} \\ &+ V_{pp'p''p'''}^{bare} + V_{pp'p''p'''}^{ind} (E) + Exch(p,p') \right] N_{pp'p''p'''} \end{split}$$

Technical note: This extended pp-RPA is comparable to the NFT treatment: In fact, If self-energy and Vind are included perturbatively in a second diagonalisation, the following "well known" NFT diagrams for the matrix elements appear:


Technical note II:

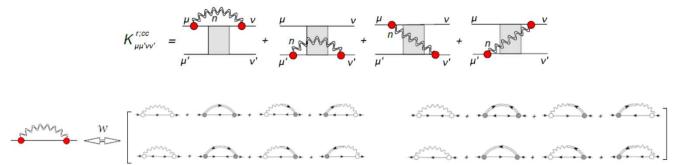
The self-energy and the induced interaction are energy-dependent, thus it is possible to reconstruct the amplitudes of the resulting 0+ states on the intermediate 2p-1phonon configurations, so that they can be written:

 $|0_{n}^{+}\rangle = \sum_{pp'} (X_{pp'} (n) |pp'(0^{+})\rangle + Y_{hh'} (n) |hh'(0^{+})\rangle) + \sum_{pp'\nu} R_{pp'\nu} (n) |pp'(2^{+})\nu(2^{+})\rangle$

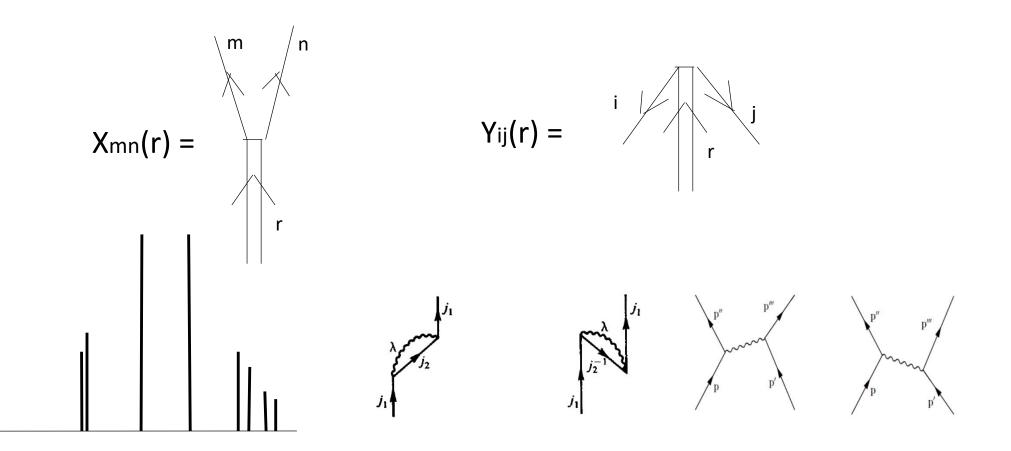
Can also be obtained by diagonalizing an energy independent matrix in the extended basis including them.

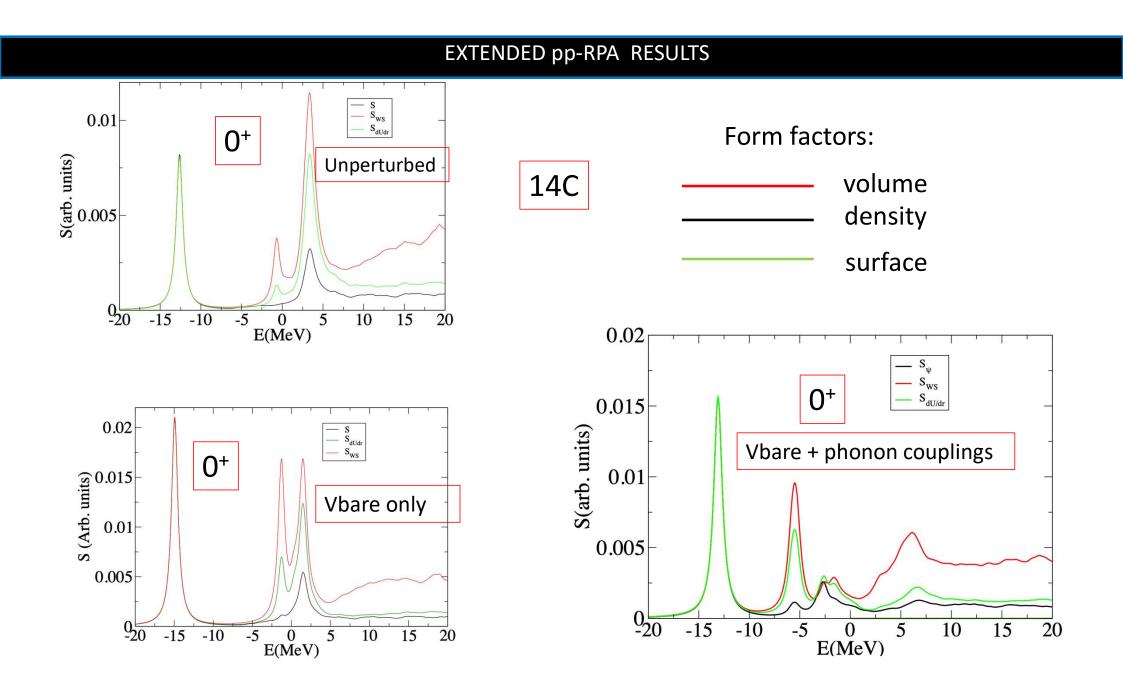
Similar theoretical schemes

Second RPA; Subtraction problem (Exact GS!!)


We (NFT) don't have such constrain

PHYSICAL REVIEW C 92, 034303 (2015)


Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional


D. Gambacurta,¹ M. Grasso,² and J. Engel³

E. Litvinova and Y. Zhang (arXiv 2208.07843v1)

Summarizing: Pairing correlations, Decay width to the continuum and PVC effects

EXTENDED pp-RPA RESULTS

Xpp'; Ypp' and Rpp'2+ amplitudes for 12C + 2n (0+) states: Bound states

	E_{gs} = -13.09 MeV	10	$E_{0^+_2} = -5.96 \text{ MeV}$	36	$E_{0^+_2} = -3.47 \text{ MeV}$	
	$R^{2_1^+} = 0.130$	~	$\hat{R}^{2_1^+} = 0.382$	~	$\overset{3}{R}^{2_1^+} = 0.348$	
l_j	X_{lj}^2	Y_{lj}^2	X_{lj}^2	Y_{lj}^2	X_{lj}^2	Y_{lj}^2
$s_{1/2}$	0.006	0.003	0.283	-	0.376	-
$p_{1/2}$	0.833	-	0.050	-	0.043	-
$p_{3/2}$	(2)	0.002	0.001	-	° -	-
$d_{3/2}$	0.003		0.005			-
$d_{5/2}$	0.046	-	0.327	-	0.256	-

Table 4: Main 0-phonon components of the wavefunctions of the ground state and of the two lowest excited 0^+ states calculated with a constant effective mass, $m_{eff} = m_{red} = 0.92m \ (R_{box} = 28 \text{ fm}).$

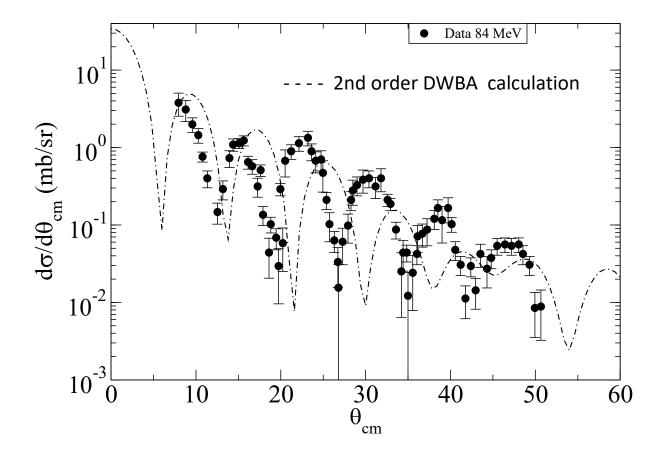
	$R^{2^+_1}_{ljl'j'}$						
$l_j / l'_{j'}$	$s_{1/2}$	$p_{1/2}$	$p_{3/2}$	$d_{3/2}$	$d_{5/2}$	$f_{5/2}$	$f_{7/2}$
$s_{1/2}$	2	-	-	(1)	0.003	- -	14
$p_{1/2}$	5	-	0.105	()	5	0.0146	1.7
$p_{3/2}$	~	0.105	-	0.004		-	-
$d_{3/2}$	¥		0.004		<u> </u>	-	14
$d_{5/2}$	0.003	-	- . .		0.005	-	2 11
$f_{5/2}$	-	0.0146	-	-	-	-	
$f_{7/2}$	<u> </u>	<u> </u>	2	(<u>an</u>	<u></u>	<u> </u>	220

Table 5: Phonon components $R_{ljl'j'}^{2_1^+}$ larger than 0.001, calculated in the wavefunction of the ground state of ¹⁴C calculated with a constant effective mass, $m_{eff} = m_{red} = 0.92m \ (R_{box} = 28 \text{ fm}).$

EXTENDED pp-RPA RESULTS

Xpp' and cumulative Rpp'2+ amplitudes for 12C + 2n (0+;GPV)

	$E = 6.87 R_{box} = 20$	$E = 6.91 R_{box} = 22$	$E = 7.14 R_{box} = 24$	$E = 6.96 R_{box} = 26$	$E = 7.11 R_{box} = 28$
	$R^{2_1^+} = 0.623$	$R^{2_1^+} = 0.729$	$R^{2_1^+} = 0.728$	$R^{2_1^+} = 0.613$	$R^{2_1^+} = 0.785$
l_j	X_{lj}^2	X_{lj}^2	X_{lj}^2	X_{lj}^2	X_{lj}^2
$s_{1/2}$	0.06	0.041	0.03	0.04	0.012
$p_{1/2}$	0.112	0.004	0.001	0.005	0.012
$p_{3/2}$	0.029	0.003	0.056	0.005	0.05
$d_{3/2}$	0.006	0.019	0.007	0.003	0.007
$d_{5/2}$	0.154	0.195	0.179	0.279	0.111
$f_{5/2}$					
$f_{7/2}$	<u>19</u> 2	<u>2</u> 0		121	20


Table 23: Main 0-phonon components of the wavefunctions of the excited state of ¹⁴C carrying the largest S_{dUdr} strength around E = 7 MeV for a series of boxes ($R_{box} = 20-28$ fm).

Note: About 70% on the phononic side!!

 $|0^{+}_{n}\rangle = \sum_{pp'} (X_{pp'} (n) |pp'(0^{+})\rangle + Y_{hh'} (n) |hh'(0^{+})\rangle) + \sum_{pp'\nu} R_{pp'\nu} (n) |pp'(2^{+})\nu(2^{+})\rangle$

EXTENDED pp-RPA RESULTS

$$^{12}C(^{18}O,^{16}O)^{14}C(gs)$$
 at $E_{lab} = 84 \text{ MeV}$

CONCLUSIONS

We have computed the 2n-transfer strength to populate 0+ states in the continuum of 14C and made the first steps to compute the absolute cross section of the reaction ¹²C(¹⁸O,¹⁶O)¹⁴C. The theoretical model is based on particle-particle RPA extended to include the effects of coupling to collective quadrupole vibrations, in keeping with previous calculations of weakly-bound systems.

The aim is to compare our results with the bump and the associated angular distribution revealed in the excitation spectrum and attributed to the Giant Pairing Vibration.