CO EX 7 Catania 11-16 June 2023

7th International Conference on Collective Motion in Nuclei under Extreme Conditions (COMEX7)

LATEST RESULTS ON THE FraISe FACILITY AND POSSIBLE PHYSICS CASES AT INFN-LNS

N.S. Martorana

nunzia.martorana@ct.infn.it INFN-Sezione di Catania CHIRONE collaboration

Outline

- o Status of the FralSe facility at Laboratori Nazionali del Sud of INFN (INFN-LNS)
- Diagnostics and tagging devices based on SiC technology
- Preliminary tests and simulations studies
- Possible physics cases
- Conclusions
- \circ Perspectives

The **POTLNS project (https://potlns.lns.infn.it/it/)** aims at the production of high intensity ion beams and it consists in an upgrade of existing and operating devices at INFN-LNS designed for the basic research in Nuclear Physics

D Rifuggiato HIR@LNS 2015

The **POTLNS project (https://potlns.lns.infn.it/it/)** aims at the production of high intensity ion beams and it consists in an upgrade of existing and operating devices at INFN-LNS designed for the basic research in Nuclear Physics

The upgrade of the Superconductive Cyclotron will provide stable ion beams with a power up to $10 \text{ kW} \rightarrow$ beams from carbon to argon at intermediate energies with intensity up to $10^{13} - 10^{14} \text{ pps}$

Extraction for stripping

N.S
. Ma
rtora
na -
nunz
zia.m
artor
ana(
ອct.in
fn.it

lon	Energy	Isource	lextr	lextr	Pextr					
	MeV/u	еμА	еμА	pps	watt					
¹² C q=5+	30	200	45 (6+)	4.7•10 ¹³	2700					
¹² C q=4+	45	400	90 (6+)	9.4•10 ¹³	8100					
¹² C q=4+	60	400	90 (6+)	9.4•10 ¹³	10800					
¹⁸ O q=6+	20	400	80 (8+)	6.2•10 ¹³	3600					
¹⁸ O q=6+	29	400	80 (8+)	6.2•10 ¹³	5220					
¹⁸ O q=6+	45	400	80 (8+)	6.2•10 ¹³	8100					
¹⁸ O q=6+	60	400	80 (8+)	6.2•10 ¹³	10800					
¹⁸ O q=7+	70	200	34.3 (8+)	2.7•10 ¹³	5400					
²⁰ Ne q=7+	28	400	85.7 (10+)	5.3•10 ¹³	4800					
²⁰ Ne q=7+	70	400	85.7 (10+)	5.3•10 ¹³	10280					
⁴⁰ Ar q=14+	60	400	77.1 (18+)	2.7•10 ¹³	10280					

N.S. Martorana - nunzia.martorana@ct.infn.it

- In-flight method (fragmentation of primary CS beam on Be/C targets) using a maximum beam power of 2-3 KW
- FralSe will produce RIBs with intensity in the range of $10^3 10^7$ pps in the Fermi energy regime

- In-flight method (fragmentation of primary CS beam on Be/C targets) using a maximum beam power of 2-3 kW
- FralSe will produce RIBs with intensity in the range of $10^3 10^7$ pps in the Fermi energy regime

- In-flight method (fragmentation of primary CS beam on Be/C targets) using a maximum beam power of 2-3 kW
- FralSe will produce RIBs with intensity in the range of $10^3 10^7$ pps in the Fermi energy regime
- Main selection: fragment separator made of 4 dipoles and 6 quadrupoles in a symmetrical configuration and 2 sextupoles to adjust the aberration effect

Martorana N.S. et al., Frontiers in Physics, 10 (2022) Martorana N.S. et al., Il Nuovo Cimento 45 C (2022) 63 Martorana N.S., Il Nuovo Cimento 44 (2021) 1 Russo A et al., NIM B 463 (2020) 359 418 – 420 Russotto P. et al., J. Physics: Conf. Ser., 1014 (2018) 012016

N.S.

Martorana

- In-flight method (fragmentation of primary CS beam on Be/C targets) using a maximum beam power of 2-3 kW
- FralSe will produce RIBs with intensity in the range of $10^3 10^7$ pps in the Fermi energy regime
- Main selection: fragment separator made of 4 dipoles and 6 quadrupoles in a symmetrical configuration and 2 sextupoles to adjust the aberration effect
 Exit Slit

- maximum magnetic rigidity 3.2 Tm
- 2 slits: in the dispersive plane and at the exit of fragment separator
- possibility of almost pure secondary beams through the use of a wedge/degrader
- a rotating target CLIM

Martorana N.S. et al., Frontiers in Physics, 10 (2022) Martorana N.S. et al., Il Nuovo Cimento 45 C (2022) 63 Martorana N.S., Il Nuovo Cimento 44 (2021) 1 Russo A et al., NIM B 463 (2020) 359 418 – 420 Russotto P. et al., J. Physics: Conf. Ser., 1014 (2018) 012016 A new production target CLIM will be used (S. Grévy and R. Hue, INTDS2008, (Caen, France), Sep 2008)

- Material target Beryllium or Carbon
- Thickness 100 to 1500 μm
- Max beam power 3 kW
- Max beam power deposited in the target 500 W
- Beam spot size in the target σ =0.5 mm
- Target rotation speed: 2000 revs/min

The target will be significantly activated \rightarrow a dedicate system for automatic change and remote handling has been designed

The tagging system is going to be tested this week!

N.S. Martorana - nunzia.martorana@ct.infn.it

Critical aspects for high-quality beams are the tuning and the transport, representing time-consuming processes and requiring dedicated **diagnostics and tagging devices** measuring different RIBs features

• within a Fragment Separator:

- point-to-point measurement of the cocktail intensity, relative composition, 2D profile, angular distribution
- start time for event-by-event ToF/energy measurement

Critical aspects for high-quality beams are the tuning and the transport, representing time-consuming processes and requiring dedicated **diagnostics and tagging devices** measuring different RIBs features

• within a Fragment Separator:

- point-to-point measurement of the cocktail intensity, relative composition, 2D profile, angular distribution
- start time for event-by-event ToF/energy measurement

• in the final set-up point (measurement chamber):

• event-by-event tagging of cocktail beam and trajectory info

Critical aspects for high-quality beams are the tuning and the transport, representing time-consuming processes and requiring dedicated **diagnostics and tagging devices** measuring different RIBs features

two chambers to house diagnostics systems and in addition a tagging device for the CHIMERA beam line

• within a Fragment Separator:

- point-to-point measurement of the cocktail intensity, relative composition, 2D profile, angular distribution
- start time for event-by-event ToF/energy measurement

$\circ~$ in the final set-up point (measurement chamber):

• event-by-event tagging of cocktail beam and trajectory info

Array of radiation hard detectors equipped with optimized fast frontend electronics

- versatile and useful for FraISe and other facilities
- sustain several experiments per year
- relevant timing features for the determination of the RIBs composition by the Δ E-TOF and energy

Due to its robustness and radiation hardness→ Silicon Carbide (SiC) technology has been chosen

- The system will consist of two arrays, each one made of single detection pads with an active area of 5 mm \times 5 mm and a thickness of 100 μ m
- By arranging an array of several pads in rows and columns will be covered an area of the order of $\approx 60 \times 30 \text{ mm}^2$
- Such a segmentation sustains a maximum value of $\approx 10^7$ pps
- A sandwich configuration of two detection arrays readout in coincidence will improve the position resolution and partially recover for the dead region around each sensor die (efficiencies larger than 90%)
- The energy resolution has to be 0.5% \rightarrow ToF resolution of ~ 250 ps is requested

Martorana N.S. et al., Frontiers in Physics, 10 (2022) Tudisco S. et al., Sensors 2018, 18, 2289 Martorana N.S., Il Nuovo Cimento 44 C (2021) 1 Martorana N.S. et al., Il Nuovo Cimento 45 C (2022) 63

- Preliminary qualification of first 5 mm × 5 mm detector prototypes → measurements show a 21 pF detector capacitance at about 400 V depletion voltage
- First design of a dedicated frontend in charge preamplifier configuration to readout the full detection system (Altana C et al., IEEE Nuclear Science Symposium and Medical Imaging Conference 390 (NSS/MIC) (2021), 1–4. doi:10.1109/NSS/MIC44867.2021.9875842)

Photograph of the first mini-carrier developed for a 1 cm² active area detector prototype \rightarrow the reduced thickness area is evident as transparent to light

Sketch of the proposed detection system with also the moveable arm housed in a DN160 spherical cross element along the beam path

Martorana N.S. et al., Frontiers in Physics, 10 (2022)

Ecosistema SAMOTHRACE - SiciliAn MicronanOTecH Research And Innovation CEnter

Study of the inter pad effect with first tests on 2x2 SiC prototype

Finanziato dall'Unione europea NextGenerationEU

7th International Conference on Collective Motion in Nuclei under Extreme Conditions (COMEX7)

First results have been obtained using primary beams whose extraction by stripping in the upgraded CS has been studied in details

lon	Energy	Р
	MeV/u	kW
¹² C q=6+	60	2
¹⁸ O q=8+	70	2
²⁰ Ne q=10+	70	2
⁴⁰ Ar q=18+	60	2

First results have been obtained using primary beams whose extraction by stripping in the upgraded CS has been studied in details

lon	Energy	Р
	MeV/u	kW
¹² C q=6+	60	2
¹⁸ O q=8+	70	2
²⁰ Ne q=10+	70	2
⁴⁰ Ar q=18+	60	2

These primary beams can be accelerated also at lower energies \rightarrow the primary beam energy has to be ≥ 20 AMeV in order to make the projectile fragmentation reaction possible \rightarrow lower energy primary beams will cause a decrease of expected intensities

12C6+ @	60 Me\	//A 2 k\	W on ⁹ B	e target	t i i			¹⁸ O ⁸⁺ @70 MeV/A 2 kW on ⁹ Be target							
0	8	8	0	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne			¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne
	6A		**		17 F	18F	¹⁹ F				17F	18F	¹⁹ F	20F	21F
	SV P	¹³ O	140	¹⁵ O	¹⁶ O	170	¹⁸ O	¹³ O 7.2E4 54	¹⁴ O 1.4E6 54	¹⁵ 0 2.8E7 54	¹⁶ 0	170	¹⁸ 0	¹⁹ O 4.4E6 50	²⁰ O
		¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	17N	¹² N 1.2E6	¹³ N 2.3E7	¹⁴ N	¹⁵ N	¹⁶ N 6.9E8 53	¹⁷ N 3.2E8 57	¹⁸ N	¹⁹ N
°C 4.0E5 45	¹⁰ C 1.2E7 43	¹¹ C 2.2E8 44	¹² C	13C	14C	15C	¹⁶ C	11C	¹² C	¹³ C	¹⁴ C 1.1E8 59	¹⁵ C 4.0E7	¹⁶ C 1.4E7	¹⁷ C 1.2E5	¹⁸ C 4.8E2
⁸ B 3.1E6 42		¹⁰ B	11B	¹² B	¹³ B	14B	¹⁵ B	¹⁰ B	¹¹ B	¹² B 2.6E7	¹³ B 7.5E6	¹⁴ B 1.4E6	¹⁵ B 2.6E5	50	17B
⁷ Be 1.5E7 43		9Be	¹⁰ Be 1.6E7 50	¹¹ Be	¹² Be		¹⁴ Be	9Be	¹⁰ Be	¹¹ Be 1.5E6 58	¹² Be 2.8E5	00	¹⁴ Be 3.0E3		
۴Li	⁷ Li	⁸ Li 4.2E6 50	⁹ Li 8.9E5 51	\langle	¹¹ Li			⁼Li	9Li	30	¹¹ Li 3.3E3 60		05		
	⁶ He 2.1E6 51		⁸ He 1.8E4 51		/	Exp Ene	ected y rgy afte	ield (pps) er the FR/	AISE exi	t slit (A	MeV)	1			

1808+ @70 MeV/A 2 kW on 9Re target

Martorana N.S. et al., Frontiers in Physics, 10 (2022)

²⁰Ne¹⁰⁺ @70 MeV/A 2 kW on ⁹Be target

¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne
8.7E5	3.1E7	6.0E8					
53	51	52					
Realized	17F	¹⁸ F	¹⁹ F	²⁰ F	21F	22F	²³ F
	1.7E8			9.5E6			
	50			55			
¹⁵ 0	¹⁶ O	170	¹⁸ O	¹⁹ O	200	210	220
1441	1541	1641	1761	1041	1051	2044	2141
14N	1910	TON	-"N	1ºN	13N	2ºN	21N
				3.7E6			
170	140	150	150	5/	110	19.0	20.0
130	14C	-2C	-•C	"'C	-•C	ъС	2ºC
12R	13 R	14R	15R	er er	17R	er er	19 R
¹¹ Be	12Be	*	¹⁴ Be				-
	¹¹ Li						
<u>.</u>		5.	50.	5.	93.	5.	93.
	-						
22		22	9	22	22	22	02

⁴⁰Ar¹⁸⁺ @60 MeV/A 2 kW on ⁹Be target

				₃₉ K	^{зь} К 6.6ЕЗ 48	³⁷ K 8.2E4 48	³⁸ K 6.3E5 49	зоК	υK	۸ _τ κ	⁴² K 1.3E6 41	⁴³ K 2.6E3 40
	³¹ Ar	32Ar	³³ Ar	³⁴ Ar	³⁵ Ar 8.9E5 45	³⁶ Ar	³⁷ Ar 9.2E7 42	³⁸ Ar	^{.39} Ar 1.3E9 43	⁴⁰ Ar	⁴¹ Ar 1.0E7 47	⁴² Ar 2.2e1 42
		31CI	³² Cl 4.6E4 46	³³ Cl 1.2E6 46	³⁴ Cl 1.5E7 42	۵CI	₃₽CI	³′Cl	^{≉8} Cl 7.4E8 39	^{೨º} Cl 3.2E8 44	⁴ºCl 4.9E6 44	⁴±Cl 4.8E3 46
285	²⁹ 5	^{∷⊪} S 5.7E4 42	³¹ 5 3.5E7 45	325	335	345	35 1.1E8 35	:16S	⁻³⁷ 5 6.1E7 48	³⁸ 5 1.7E7 48	^{:19} S 1.6E5 47	405 4.1E2 49
27p	²³ p 5.8E4 42	²⁹ P 1.3E6 43	³⁰ P 1.1E7 43	зтр	³² P 9.2E7 44	^{ззр} 6.7Е7 48	^{эи} р 3.9Е7 44	^{з5} р 1.5Е7 48	зср	³⁷ p 8.2E5 50	ॐp 7.9E3 48	30 b
⁹⁶ Si	²⁷ Si 9.7E5 43	⁹⁸ Si	²⁹ Si	30 S	³¹ Si 3.5E7 45	³⁹ Si 1.3E7 48	³³ Si 3.5E6 52	^{:¤} Si 1.0E6 52	³⁵ Si 1.9E5 49	³⁶ Si 2.5E4 49	³⁷ Si	³⁸ Si
²⁵ AI 9.2E5 44	²⁶ Al 5.4E6 44	²⁷ AI	²⁸ Al 2.0E7 45	²⁹ Al 1.2E7 45	³⁰ Al 4.4E6 45	³¹ Al 1.0E6 52	³² Al 2.1E5 45	³³ AJ 3.1E4 52	³⁴ Al 4.3E3 52	³⁵ Al 5.0E2 52	³⁶ Al 4.9 51	³⁷ AI

The use of other primary beams needs studies concerning the feasibility of extraction through the stripping channel \rightarrow detailed studies of acceleration trajectories inside the CS, depending also on the maximum injection currents given by the ion sources

Martorana N.S. et al., Frontiers in Physics, 10 (2022) Tudisco S. et al., Sensors 2018, 18, 2289 Martorana N.S., Il Nuovo Cimento 44 C (2021) 1 Martorana N.S. et al., Il Nuovo Cimento 45 C (2022) 63 FralSe will be a very competitive facility for the production of light and medium mass unstable nuclei in the Fermi energy regime → a plethora of studies concerning unstable nuclei close and far from the stability valley will be carried out

- Pygmy Dipole Resonance in ²⁰O, ³⁸S, ⁶⁸Ni
- Clustering structures (¹⁰Be, ¹⁶C, ¹³B)
- Isospin physics in the Fermi energy regime with high isospin asymmetries (^{46,34}Ar and ⁶⁸Ni)
- Nuclear structures (proton-halo in ⁸B 3.1×10⁶ pps, nuclear-halo ¹¹Be 1.5×10⁶ pps)
- Reactions for nuclear astrophysics as ¹⁴O(α , p)¹⁷F \rightarrow reaction that could be the onset of a possible route that breaks out from the HCNO cycles
- Studies of interest for medical physics could be conducted as the study of ¹¹C β^+ decay \rightarrow simultaneous use of imaging techniques (using γ emitted by positron annihilation) and energy dissipation techniques

Martorana N.S. et al., Frontiers in Physics, 10 (2022)

At INFN-LNS we performed the first experiment to excite the PDR in the ⁶⁸Ni through an isoscalar probe, i.e. a natural carbon target

⁶⁸Ni + ¹²C @ 28A MeV (N.S. Martorana et al., Phys. Lett. B, 782, (2018), 112)


```
N.S. Martorana <sup>a,b,*</sup>, G. Cardella <sup>c</sup>, E.G. Lanza <sup>c</sup>, L. Acosta <sup>d,c</sup>, M.V. Andrés <sup>e</sup>, L. Auditore <sup>f,c</sup>,
F. Catara <sup>c</sup>, E. De Filippo <sup>c</sup>, S. De Luca <sup>f,c</sup>, D. Dell' Aquila <sup>g</sup>, B. Gnoffo <sup>b,c</sup>, G. Lanzalone <sup>h,a</sup>,
I. Lombardo <sup>c</sup>, C. Maiolino <sup>a</sup>, S. Norella <sup>f,c</sup>, A. Pagano <sup>c</sup>, E.V. Pagano <sup>a</sup>, M. Papa <sup>c</sup>, S. Pirrone <sup>c</sup>,
G. Politi <sup>b,c</sup>, L. Quattrocchi <sup>c</sup>, F. Rizzo <sup>a,b</sup>, P. Russotto <sup>a</sup>, D. Santonocito <sup>a</sup>, A. Trifirò <sup>f,c</sup>,
M. Trimarchi <sup>f,c</sup>, M. Vigilante <sup>g</sup>, A. Vitturi <sup>i</sup>
```

```
<sup>4</sup> INPN-LNS, Catania, Italy
<sup>6</sup> Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy
<sup>6</sup> INFN-Sezione di Catania, Catania, Italy
<sup>6</sup> INStituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
<sup>8</sup> Departamento de FAMN, Universidad de Sevilla, Sevilla, Spain
Dipartimento MIF, Neissina, Italy
<sup>8</sup> INNN-Sezione di Napoli and Dipartimento di Fisica, Università di Napoli Federico II, Napoli, Italy
<sup>8</sup> INNN-Sezione di Riscia e Astronomi, Università Ca Calieli and INFN-Sezione di Padova, Padova, Italy
```

- Exotic beam \rightarrow FRIBs (in Flight Radioactive Ion Beams) facility (P. Russotto et al., Jour. Phys.: Conf. Ser., 1014, (2018), 012016)
- Standard tagging system \rightarrow MCP + DSSSD (I. Lombardo et al., Nucl. Phys. B, Proc. Suppl., 215, (2011), 272)
- Trajectory \rightarrow PPAC (D. Pierroutsakou et al., NIM A, 834, (2016), 46)
- γ rays \rightarrow CHIMERA CsI(TI) (A. Pagano et al., Nucl. Phys. A, 734, (2004), 504, G. Cardella et al., NIM A, 799, (2015), 64)
- 68 Ni and other fragments \rightarrow FARCOS (E.V. Pagano et al., EPJ Web of Conferences, 117, (2016), 10008)

At INFN-LNS we performed the first experiment to excite the PDR in the ⁶⁸Ni through an isoscalar probe, i.e. a natural carbon target

⁶⁸Ni + ¹²C @ 28A MeV (N.S. Martorana et al., Phys. Lett. B, 782, (2018), 112)

- The γ -rays angular distribution shows the E1 character of the transition
- The measured cross section was 0.32 mb with 18% of statistical error
- The strength of the PDR amount at 9 \pm 2 % EWSR

The comparison with the experiment carried out at the GSI does not show any significant difference in the shape of two distributions → the isospin splitting is not observed for unstable nuclei above the neutron emission threshold

FARCOS covered some of the forward telescopes of CHIMERA \rightarrow neutrons can be detected via (n, α) and (n, p) reactions on CsI(TI) producing α and proton lines (L. Auditore et al., EPJ Web of Conferences, 88, (2015), 01001)

FARCOS covered some of the forward telescopes of CHIMERA \rightarrow neutrons can be detected via (n, α) and (n, p) reactions on CsI(TI) producing α and proton lines (L. Auditore et al., EPJ Web of Conferences, 88, (2015), 01001)

We (spokespersons N.S. Martorana, G. Cardella, E.G. Lanza) proposed an experiment-postponed/deleted due to the COVID pandemic- with the aim to study the ⁶⁸Ni PDR using both isoscalar and isovector probes

Martoran

infn.i

What can be done with the new FraISe facility? →Investigation of the PDR in several nuclei

⁶⁸Ni, ³⁸S, ²⁰O but also in stable medium mass nuclei with isoscalar and isovector probes (carbon and Au/Pb target)

FARCOS in its final configuration to detect reaction products

γ-ray measured with CsI(Tl) -CHIMERA sphere

Also neutron detection with a new prototype under construction - PRIN-ANCHISE https://home.infn.it/it/news-infn/4627-prin-2020-11-progetti-vincitori-con-l-infn-di-cui-3-comecapofila See the poster of E.V. Pagano

E.V. Pagano et al., NIM A 905 47-52 (2018) E.V. Pagano et al., NIM A 889 pp. 83-88 (2018) E.V. Pagano et al., Front. Phys. 10:1051058, (2023) ⁷⁰Zn primary beam at 40 MeV/nucleon, 1 kW on a ⁹Be target \rightarrow ⁶⁸Ni 4.1 10⁵ pps with the 52% of the whole cocktail beam produced

Simulation of spatial distribution of beam components, using a SiC detector placed after the exit slit

N.S.

Martorana - nunzia.martorana@ct.infn.it

A. Bracco et al., Progress in Particle and Nuclear Physics, 106, (2019)

40 Ar at 60 MeVA 2 kW + 9 Be target

Simulation of spatial distribution of beam components, using a SiC detector placed after the FraISe exit slit

N.S. Martorana

nunzia.martorana@ct.infn.it

Clustering physics

 The clustering structure of α particles in neutron-rich isotopes of Be, B, C, is an interesting topic that could be studied with FralSe

A study on these structures on nuclei as ¹⁰Be, ¹⁶C has been performed with FRIBS@LNS and the CHIMERA multidetector

See the talk of F. Risitano Wednesday 14 June

With FraISe and FARCOS+CHIMERA multidetector will be possible to extend these studies to various nuclei

Isospin physics

- The study of Isospin effects in Heavy-Ion reactions at Fermi energies is an important field of research
- Such studies are also important to investigate the density dependence of the symmetry energy at sub-saturation densities

Studies of this phenomenon have been performed with CHIMERA and FARCOS multidetector **on stable nuclei** (E. Geraci et al., IL NUOVO CIMENTO 45 C (2022) 44) P. Russotto et al., Eur. Phys. J. A (2020) 56:12

Simulation of spatial distribution of beam components, using a SiC detector placed after the FraISe exit slit

With FraISe and FARCOS+CHIMERA multidetector will be possible to extend these studies to various nuclei

Conclusions

- Status of the FraISe@LNS facility and related diagnostics and tagging systems
- FraISe will allow to produce RIBs \rightarrow 2-3 kW primary beam; intensity of $10^3 10^7$ pps
- Investigations performed with both tests and LISE++ simulations
- Reference study fixing the features of diagnostics and tagging systems based on SiC detectors

Perspectives

- Further steps will concern the production of SiC arrays and the validation of whole system
- GEANT4 simulations and experimental tests on the tagging device
- Detailed studies of stripping extraction for further beams

Thank you for the attention

COTO EX7 Catania 11-16 June 2023

N.S. Martorana¹, L. Acosta², C. Altana³, A. Amato³, G. Cardella¹, A. Caruso³, L. Cosentino³, M. Costa³, E. De Filippo¹, G. De Luca³, S. De Luca³, E. Geraci^{1,4}, B. Gnoffo^{1,4}, C. Guazzoni⁵, C. Maiolino³, E.V. Pagano³, S. Passarello³, S. Pirrone¹, G. Politi^{1,4}, S. Pulvirenti³, F. Risitano^{1,6}, F. Rizzo^{3,4}, A.D. Russo³, P. Russotto³, D. Santonocito³, A. Trifiró⁶, M. Trimarchi^{1,6}, S. Tudisco³, G. Vecchio³

¹INFN-Sezione di Catania, Italy
 ²Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, México
 ³INFN-LNS, Catania, Italy,
 ⁴Dipartimento di Fisica e Astronomia Ettore Majorana, Università degli Studi di Catania, Italy,
 ⁵DEIB Politecnico Milano and INFN Sez. Milano,
 ⁶Dipartimento MIFT, Universitá di Messina, Italy