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Nuclear incompressibility and the ISGMR
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Isoscalar Giant Monopole Resonance or  “breathing 
mode”: its energy should be correlated with the 
incompressibility of nuclear matter. 
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Using 250 neutron star merger simulations with microphysics, we explore for the first time the role of
nuclear incompressibility in the prompt collapse threshold for binaries with different mass ratios. We
demonstrate that observations of prompt collapse thresholds, either from binaries with two different mass
ratios or with one mass ratio but combined with the knowledge of the maximum neutron star mass or
compactness, will constrain the incompressibility at the maximum neutron star density Kmax to within tens
of percent. This otherwise inaccessible measure of Kmax can potentially reveal the presence of hyperons or
quarks inside neutron stars.

DOI: 10.1103/PhysRevLett.129.032701

Introduction.—The equationof state (EOS) of neutron star
(NS) matter is one of the most fundamental, yet elusive,
relations in physics [1,2]. It lays at the interface between
several disciplines, including nuclear physics, high-
energy astrophysics, heavy-ion collisions, multimessenger
astronomy, and gravitational wave (GW) physics. Our
knowledge of NS matter properties is still partial, mostly
due to the difficulties in studying strongly interacting bulk
matter in the low-energy limit typical of nuclear interactions
[3]. Even the appropriate degrees of freedom are uncertain:
while nucleons are the relevant species around the nuclear
saturation density, n0 ¼ 0.16 fm−3, it is still unclear if
hyperons [4,5] or a phase transition to quark matter [6–8]
can appear at densities n≳ 2n0 in NS interiors.
NS EOS models are experimentally constrained by the

masses of ordinary nuclei, as well as by the energy per
baryon and its derivatives with respect to baryon density nb
around n0 and close to isospin symmetry, i.e., for symmetry
parameter δ≡ ðnn − npÞ=nb ≈ 0, with nn;p being the den-
sity of neutrons and protons. If P is the matter pressure, the
nuclear incompressibility of cold nuclear matter at fixed
composition is defined as

Kðnb; δÞ≡ 9
∂P
∂nb

!!!!
T¼0;δ¼const

: ð1Þ

It describes the response of matter to compression and
its value can be currently measured only for symmetric

matter at saturation density Ksat, although with some
controversy [9–13]. While isoscalar giant monopole reso-
nance experiments for closed-shell nuclei provided
Ksat ¼ ð240$ 20Þ MeV, studies based on open-shell
nuclei reported quite different values in the range 250–
315 MeV [12] or even values around 200 MeV [13].
Nevertheless, Ksat is unconstrained at densities and com-
positions relevant for NSs (far from n ≈ n0 and δ ≈ 0). In
particular, according to the solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equation, the NS central
density increases monotonically with the NS mass and at
the stability limit, corresponding to mass and radius (MTOV

max ,
RTOV
max ), can reach nTOVmax ∼ 4–7n0, depending on the EOS.

Moreover, for nb ≳ n0, β-equilibrated matter is very neutron
rich, δeq ∼ 1.
In addition to nuclear constraints, astrophysical

NS properties provide useful insights on the EOS.
Constraints derived from the observation of massive,
isolated NSs [14–20], from GW signals [21,22], and
multimessenger observations of binary neutron star
(BNS) mergers [23–28], or by their combination [29,30],
are very informative about the high-density regime. A key
phenomenon in this respect is the prompt collapse (PC) to
black hole (BH) of the merger remnant, since this behavior
can influence both the GW and electromagnetic (EM)
signals produced by BNS mergers [31–36]. The PC
behavior of equal mass BNSs was extensively explored
in Refs. [37–43]. It was shown, for example, that the
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(Q)RPA using EDFs in a nutshell
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[ ]                   EE ==YY=
effĤĤ F F r̂

  F Slater determinant Û 1-body density matrixr̂

If Veff is well designed, the g.s. (minimum) energy can
match experiment at best. Hartree-Fock or Kohn-Sham.

• Within a time-dependent theory (TDHF), one can 
describe oscillations around the minimum.

• The restoring force is:                          .

• The linearization of the equation of the motion leads 
to RPA1. 1Random Phase Approximation. 
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How much correlated are EGMR and K∞?
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EGMR

K∞

Only self-consistent DFT calculations that 
treat uniform matter and the response 
of finite nuclei on equal footing allow 
extracting K∞

J.P. Blaizot, Phys. Rep. 64, 171 (1980)

EGMR

K∞

There are different sources of model 
dependence in this procedure.

One key point is that different EDFs 
have different assumptions for the 
density dependence.

GC et al., Phys. Rev. C70 (2004) 
024307.

Energy Density Functionals (EDFs)

• Sensitivity to the choice of the nucleus?



COMEX 7, Catania, 12-16 June 2023  5

From the ISGMR measured in 208Pb one 
extracts:

However, in even-even 112-124Sn, the
ISGMR centroid energy is overestimated
by about 1 MeV by the same models,
which reproduce the ISGMR energy well
in 208Pb.

Pairing can partly explain the problem but
with some remaining ambiguity.

𝐾! = 240 ± 20MeV

66 U. Garg, G. Colò / Progress in Particle and Nuclear Physics 101 (2018) 55–95

Fig. 9. (a) Inelastic ↵-scattering spectra for 208Pb for (0 ± 2)� . A two-peak + polynomial-background fit to the data is shown superimposed with the peaks
corresponding to the HEOR and the ISGDR indicated. (b) The ‘‘difference spectrum’’. A fit using peak parameters identical to those in (a) is also shown; note
that the fit corresponds to no HEOR strength.
Source: Figure from Ref. [37].

Fig. 10. (Color online) RPA calculations of the monopole strength in 208Pb, performed by using the nonrelativistic Skyrme-type functional SAMi [42], the
Gogny-type functional DM1 [43], and the relativistic functional DDME2 [44]. The vertical lines show the peak energy obtained in the experiments performed
at TAMU (13.9 MeV) and RCNP (13.7 MeV).

U. Garg, GC, 
PPNP 101 (2018) 
55

J. Li et al., PRC 78, 064304 (2008) 

Why is Tin so soft?



• Our solution to the “softness” puzzle
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(Q)RPA + (Q)PVC
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E � E↵ + i⌘

The state α is 1p-1h plus one phonon.

The scheme is very effective to produce 
GR widths. It also produces a downward 
shift of the GRs.

<latexit sha1_base64="z0jN6kvThzDp1OIX6a2VIOydZvQ="></latexit>

⌃(E) ⇡
Z

dE0 V 2

E � E0 + i✏
1

E � E0 + i✏
! 1

E � E0 � i⇡�(E � E0)

WE HAVE BUILT A NEW SCHEME 
INCLUDING PAIRING



Some detail + the subtraction scheme  

COMEX 7, Catania, 12-16 June 2023  8

All QRPA calculations are performed in a 
model space which is large enough so 
that the EWSR is satisfied.

We calculate natural-parity phonons with 
0+, 1-, 2+ ... 5- and select those having 
energy less than 30 MeV and strength 
larger than 2% of the total strength.

The convergence of the results with 
respect to the choice of the model 
space has been carefully assessed.

<latexit sha1_base64="qaEf1iYUobR/kuSTo+4uXYDW3fQ=">AAACHHicbVDLSgMxFM3UV62vUZdugkVoF5YZ3xuhKILLivYBnaFk0sw0NPMgyShl6Ie48VfcuFDEjQvBvzGdjqKtJwROzrmXm3uciFEhDeNTy83Mzs0v5BcLS8srq2v6+kZDhDHHpI5DFvKWgwRhNCB1SSUjrYgT5DuMNJ3++chv3hIuaBjcyEFEbB95AXUpRlJJHX3fuqaej0oXZQuqw6nXk4jz8C59fntw94efGuWOXjQqRgo4TcyMFEGGWkd/t7ohjn0SSMyQEG3TiKSdIC4pZmRYsGJBIoT7yCNtRQPkE2En6XJDuKOULnRDrm4gYar+7kiQL8TAd1Slj2RPTHoj8T+vHUv3xE5oEMWSBHg8yI0ZlCEcJQW7lBMs2UARhDlVf4W4hzjCUuVZUCGYkytPk8ZexTyqHF4dFKtnWRx5sAW2QQmY4BhUwSWogTrA4B48gmfwoj1oT9qr9jYuzWlZzyb4A+3jC/qGnss=</latexit>

⌃(E) ! ⌃(E)� ⌃(E = 0)Subtraction:

THIS PRESCRIPTION KEEPS THE VALUE 
OF THE m-1 SUM RULE AS IN QRPA



ISGMR in Sn isotopes
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• Exp. data from D. Patel et al., Phys. Lett. B726, 178 (2013)

• QPVC reproduces the experimental data quite well.

• The best description is obtained with the Skyrme EDF SV-K226. 
Klüpfel, Reinhard, et al., PRC 79, 034310 (2009)



ISGMR in 48Ca and 208Pb
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FIG. 1. (Color online) ISGMR strength functions in even-even 112-124Sn, 48Ca, and 208Pb isotopes, calculated either by (Q)RPA using a
smoothing with Lorentzian having a width of 1 MeV (dash dot [black] line), or (Q)RPA+(Q)PVC (solid [blue] line). The SV-K226 Skyrme
force is used. The experimental data are given by green crosses [6, 13, 37].

momentum cuto↵ jmax = 15/2 are set for Ca isotopes, while
larger cuto↵s Ecut = 100 MeV, jmax = 21/2 are used for Sn
and Pb isotopes. On top of QRPA, we have included the cou-
pling with phonons having J⇡ = 0+, 1�, 2+, 3�, 4+, 5�, with
energy less than 30 MeV and exhausting a fraction of non-
energy-weighted (isoscalar or isovector) sum rule larger than
2%. The subtraction procedure is adopted, as described in
[40].

The sum rules, or k-th moments of the strength function
S (E) are defined as mk =

R 1
0 S (E)EkdE. In our case, S (E) is

with respect to the operator F̂00 =
PA

i=1 r2
i . The fulfillment of

the energy-weighted sum rule (EWSR) m1 (%), and inverse
energy-weighted sum rule (IEWSR) m�1 (fm4/MeV), calcu-
lated by QRPA+QPVC, have been checked. Taking 120Sn
with the SV-K226 Skyrme set as an example, the EWSR is
given as 215185.4 fm4MeV from the expectation value of the
double-commutator on the nuclear ground state. In a fully
self-consistent PVC approach, m1 should be fulfilled in the
case without subtraction [41]. Up to 100 MeV, m1 is indeed
exhausted at 98.7%. With the subtraction procedure, m1 is ex-
hausted by 106.8%, while m�1 is 818.45 fm4/MeV, which is
nearly equal to the one in QRPA (820.71 fm4/MeV) as dis-
cussed in [30].

There are many choices of characteristic energy for GRs,
such as the centroid energy m1/m0, the constrained energyp

m1/m�1, and the scaling energy
p

m3/m1. In the follow-
ing, we will use the constrained energy

p
m1/m�1 for our dis-

cussion since m�1 is unchanged in the case of QPVC with
subtraction. Our conclusions would remain the same if we
were to choose another definition for the ISGMR energy. The
ISGMR energies are calculated in the energy interval 10–
30 MeV for Ca, and 5–25 MeV for Sn and Pb, because the
strength is negligible outside these intervals.

In Fig. 1, we show the strength functions of the ISGMR, ob-
tained either in the framework of (Q)RPA by using a smooth-
ing with Lorentzian having a width of 1 MeV (dash dot [black]
line), or within (Q)RPA+(Q)PVC (solid [blue] line), using the
SV-K226 Skyrme force, in the even-even 112-124Sn, 48Ca, and
208Pb nuclei. We compare the results with the experimental
ones ([green] crosses) [6, 13, 37]. In general, with the inclu-
sion of (Q)PVC e↵ects, the results are significantly improved
with respect to (Q)RPA, so we can achieve a good description
of data both in the light 48Ca isotope, medium-heavy Sn iso-
topes, and heavy 208Pb. In 112�124Sn, QRPA gives one small
peak and one higher peak while the experimental strength dis-
plays a broad single peak. The ISGMR energies are higher
than the experimental ones, as pointed out in previous pa-
pers [15, 17]. With the inclusion of QPVC e↵ects, widths
are comparable with the experimental ones (cf. also [42]).
Moreover, within the self-consistent QRPA+QPVC model,
the downward shifts of energies by 0.7–0.8 MeV (with re-
spect to QRPA) make the ISGMR energies in agreement with
data, along the whole Sn isotopic chain. In the case of 48Ca,
the strength function has two main peaks in the RPA calcu-

• Exp. data from T. Li et al., Phys. Rev. Lett. 99, 162503 (2007) and S.D. 

Olorunfunmi, Phys. Rev. C 105, 054319 (2022).

• In these two cases there is no pairing.



• More details can be found in 
     Z.Z. Li, Y.F. Niu, GC, arXiV:2211.01264 [nucl-th]
     submitted on 2 Nov 2022

• A later work by E. Litvinova confirms the importance of PVC 
correlations 

     arXiv:2212.14766 [nucl-th], submitted on 30 Dec 2022
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In our work, we have been able, for 
the first time, to analyse in a 
systematic manner the consistency 
between ISGMR energies in different 
nuclei.

We have used many Skyrme EDFs.

With the inclusion of QPVC effects, a 
big improvement is achieved.

Within QPVC, the ISGMR energy in 
208Pb is consistent with 120Sn.

Z.Z. Li, Y.F. Niu, GC, arXiv:2211.01264



The energy shift from QRPA to QPVC
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In general, the coupling with the 
vibrations shifts the mean energies 
downward.
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�Ec = Ec(QRPA)� Ec(QPVC)
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Ec =
p

m1/m�1

For monopole, the shift is not large 
(less than 1 MeV).

Still, the shift in 208Pb is smaller 
than for Sn and Ca isotopes.



The mechanism behind the energy shift
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<latexit sha1_base64="z0jN6kvThzDp1OIX6a2VIOydZvQ="></latexit>

⌃(E) ⇡
Z

dE0 V 2

E � E0 + i✏
1

E � E0 + i✏
! 1

E � E0 � i⇡�(E � E0)

The real part of the self-energy produces 
the energy shift

E = QPVC energy of the GMR
E’ = energy of the doorway states

<latexit sha1_base64="9Tk3r3b6Q0l9sxLiSYX1yn1YZ1M=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEFCUVr7GChbFI9CE1UeW4TmvVsYPtIFVRvoCFX2FhACFWZjb+BrfNAC1HutLROffq3nvChFGlXffbKq2srq1vlDcrW9s7u3v2/kFbiVRi0sKCCdkNkSKMctLSVDPSTSRBcchIJxxfT/3OA5GKCn6nJwkJYjTkNKIYaSP17Vrdh5kvY3jvJE4OfaFpTBT0CjUZCS543rerruPOAJeJV5AqKNDs21/+QOA0JlxjhpTqeW6igwxJTTEjecVPFUkQHqMh6RnKkVkaZLN3clgzygBGQpriGs7U3xMZipWaxKHpjJEeqUVvKv7n9VIdXQYZ5UmqCcfzRVHKoBZwmg0cUEmwZhNDEJbU3ArxCEmEtUmwYkLwFl9eJu264507Z7en1cZVEUcZHIFjcAI8cAEa4AY0QQtg8AiewSt4s56sF+vd+pi3lqxi5hD8gfX5A3FRmyQ=</latexit>

2 q.p.⌦ 1 phonon

Doorway state energy Doorway state energy

The QPVC energy is not very different in 
the two nuclei but doorway state energies 
are higher in Sn than in Pb
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120Sn 208Pb

The pairing gap Δ makes the relative energy position of the ISGMR and of 
the doorway states different!



• Deformed nuclei
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Well-deformed nuclei

We compare with RCNP data from Y. 
Gupta et al., PRC 93, 044324 (2016).

The two-peak structure is evident.

Thanks to K. Howard.

Calculations by K. Yoshida were used 
to show that the double peak is related 
to deformation.



Other deformed QRPA schemes

COMEX 7, Catania, 12-16 June 2023  18

• Either HFB or HF-BCS equations with a Skyrme force and a pairing 
force are solved (HFBTHO / SKYAX).

• This allows to study the potential energy surfaces (PESs).

• The QRPA equations are solved at βmin on a basis with good Kπ.

M. Stoitsov et al., Comp. Phys. Comm. 184 (2013) 1592;
P.G. Reinhard et al., Comp. Phys. Comm. 258 (2021) 107603

<latexit sha1_base64="fBgLgqDJYELZ/F3y59Jp8QZ03xs=">AAAB83icbVDLSgNBEJz1GeMr6tHLYBDiJeyKohchKAGPEcwDskuYnfQmQ2YfzPQKYclvePGgiFd/xpt/4yTZgyYWNBRV3XR3+YkUGm3721pZXVvf2CxsFbd3dvf2SweHLR2nikOTxzJWHZ9pkCKCJgqU0EkUsNCX0PZHd1O//QRKizh6xHECXsgGkQgEZ2gkt05vaL3i+oDsrFcq21V7BrpMnJyUSY5Gr/Tl9mOehhAhl0zrrmMn6GVMoeASJkU31ZAwPmID6BoasRC0l81untBTo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XjfF4NrLRJSkCBGfLwpSSTGm0wBoXyjgKMeGMK6EuZXyIVOMo4mpaEJwFl9eJq3zqnNZtR8uyrXbPI4COSYnpEIcckVq5J40SJNwkpBn8krerNR6sd6tj3nripXPHJE/sD5/AN16kEY=</latexit>

E = E(�)



Monopole and quadrupole strength in AMo
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The “shoulder” is due to 
the monopole-quadrupole 
coupling.

The Skyrme EDF that 
better reproduces the 
GMR (GQR) results is 
SkPδ (SVbas).

Warning, warning ... 



Need of angular momentum projected QRPA 
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⍺

Nevertheless, the external monopole 
field in the lab must be transformed 
into the intrinsic frame.

Or, analogously, we should project 
the intrinsic states into states with 
good J.

U. Garg, G. Colò / Progress in Particle and Nuclear Physics 101 (2018) 55–95 81

Fig. 17. (Color online) Schematic representation of the effect of ground state deformation on the ISGMR and ISGQR.
Source: Figure courtesy of K. Yoshida, Kyoto University, Japan.

with that in a spherical nucleus (144Sm) [157]. Naively, one would have expected the L = 0 ISGMR to remain unaffected by
the deformation of the ground state; however, one does see a ‘‘splitting’’ of the ISGMR strength in deformed nuclei, as first
reported by Garg et al. in 154Sm [158]. This ‘‘splitting’’ results from a coupling of the K = 0 component of the ISGQR with
the ISGMR. The monopole and quadrupole vibrations in the deformed nuclei no longer have a unique J⇡ , each containing
a mixture of L = 2 and L = 0 instead. Thus, there are two K = 0 states, the lower predominantly L = 2, but containing
significant L = 0 strength; the upper predominantly L = 0 but with a small amount of L = 2 strength [158]. This is
represented schematically in Fig. 17.

In the Sm isotopes, which range from the ‘‘spherical’’ 144Sm (deformation parameter �2 = 0.09) to the well-deformed
154Sm (�2 = 0.34), the evolution of the ISGMR strength as a function of increasing deformation is observed rather
succinctly [8]: a single peak in 144Sm transmutes into two clearly discernible components in case of 154Sm. Indeed, this
transmutation is evident even in the ‘‘0�’’ inelastic scattering spectra (see Fig. 18). A clear two-component structure in the
ISGMR strength distribution was reported in the A & M work as well [9,159].

The effect of deformation on ISGDR is similar in that there is coupling between the K = 1 (as well as the K = 0)
components of the ISGDR (L = 1) and the ISHEOR (L = 3). However, because of the aforementioned LE component of
the ISGDR even in the spherical nuclei, this coupling is not as clearly evident as in case of the ISGMR. However, two effects
are discerned in going from 144Sm to 154Sm, both consistent with the coupling between the K = 1 components of the two
resonances [34,8]: (i) the relative strength of the LE component of the ISGDR increases smoothly with nuclear deformation,
whereas the strength of theHE component remains constant; (ii) thewidth of the LE component also increaseswith increased
deformation. A direct comparison of the ISGDR strength in the deformed nucleus, 154Sm, is complicated, of course, by the
uncertain nature of the LE component.

An interesting result on the effect of deformation on the ISGMR strength was presented recently in the nucleus 24Mg
[91,92]. Generally, the ISGMR strength (indeed, all multipole strengths) in the lighter-mass nuclei (A<58) is fragmented over
a wide excitation energy range and does not form a nice ‘‘peak’’ as in the higher-A nuclei (see, for example, Refs. [95,89]).
With that, any effects of deformation would be expected to be very difficult to discern. However, in recent RCNP work on

In axially deformed nuclei, K is the 
good quantum number in the intrinsic 
frame and there is monopole-
quadrupole coupling.
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with Wigner-Eckart’s theorem from Eq. (22). The second 3-j symbol imposes M 0 = K1 �µ0 , so that

(34) =
(2J1 + 1)(2J2 + 1)
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Equating then to Eq. (22) one Ænds
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which eventually provides
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This is the textbook formula given, for instance, in Eq. (11.137) of Ref. [5].

Comment

In some sense the advantage provided by Wigner-Eckart’s theorem, i.e. being able to extract a universal quantity,
independently of the speciÆc µ-component of the spherical tensor of choice, via a simple geometric coe�cient, is lost
when employing good-angular-momentum states resulting from projected intrinsically-deformed states. Indeed, as Eq.
(37) shows, the sum over µ needs to be fully taken in consideration.

2.2 Axial symmetry

As it had been previously pointed out, if the discussion is limited to axially-deformed intrinsic states, then the coe�cients
g
J

K
appearing in Eq. (26) are trivial. Indeed, the intrinsic state |�i carries, in such case, a good angular momentum

projection quantum number K 0 , such that all gJ
K
’s vanish except for K = K

0 , for which g
J

K 0 = 1. Thus, in the axial case
Eq. (37) is simpliÆed as
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where K1 and K2 are the quantum numbers carried by the states |�1i and |�2i respectively and

N
�1
i

=
q
h�i |PJi

KiKi

|�ii . (39)

The projector is further simpliÆed, since due to axial symmetry the integration over ↵ and � has no e�ect, as it is
extensively shown in App. A.2, so that the only non-trivial integral to be performed is the one over �, providing an
"e�ective" projection operator

P
J
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=
2J +1
2

Z +1

�1
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MK
(�)e�i�Jy . (40)
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Figure 1: J decomposition of HF and ph states in 4He
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Figure 2: 4He monopolar response

as it is shown in Fig. 1a. Figure 1b shows the decomposition on di�erent J ’s for all the considered ph states. For all the
ph excitations the condition in Eq. (109) is satisÆed, which already constitutes a strong benchmark on the projection
tool. The unperturbed spectrum for 4He is then analysed with and without AMP in Fig. 2a. The di�erence between the
original and the reduced (projected) transition amplitudes is uniquely linked to the normalization Nph, as Fig. 2a shows
(the red and the yellow curves are perfectly superposed), which corresponds to the J = 0 component of the selected ph
state, which varies according to the considered excitation, as shown in Fig. 1b. Eventually, the RPA original spectra
are plotted in Fig. 2b together with their projected version, both in the isoscalar and in the isovector channels. Since
the monopole response is addressed here and since the HF ground state already carries a good J = 0, the original and
projected spectra coincide exactly (the red and blue curves in the IS channel are perfectly superposed, as well as the
yellow and the green curves in the IV channel).

7.2 16O

As an intermediate more realistic study case let us focus on 16O. Although the quasi-vanishing average value of the
Q�0 operators over the HF ground state (necessary but not su�cient condition for the a state to be spherical), the
projection on good J ’s shows, in Fig. 3, that a small but not negligible J = 2 component (about 1.5% of the overall
sum) is originally present, which opens for couplings with the J = 2 channel of the ph excitations if projection is not
explicitly implemented. Indeed, this reØects into a slight yet noteworthy modiÆcation into the monopolar response of
16O, both in the unperturbed and in the full RPA results, as shown in Fig. 5, even is the result is not qualitatively (nor
quantitatively, in my opinion) altered. In some cases the altered monopolar response is linked to a strong variation
in the normalising factor associated to a given ph excitation or phonon, which may artiÆcially enhance the transition
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Figure 8: J decomposition of the ph states in 24Mg
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Figure 9: 24Mg monopolar response and associated normalising factors
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Figure 10: 24Mg quadrupolar response
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with µ0 = �µ.The sum of the forward and backward contributions eventually gives
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(6.56)
If the sum over µ (µ0) is inserted so to rename dummy indices and the realness hypothesis is satisÆed, then
the writing

hRPA||T�||!i =N0N!(2J0+1)(�1)J0�K0
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(6.57)
is eventually provided, where the normalizing factors N0 and N! will be deÆned further. Equation (6.57) is
equivalent to Eq. (6.40) in [102] up to a phase factor in front of the backwards amplitude. Details about the
actual implementation of Eq. (6.57) are given in App. J.

6.4 Normalizing RPA factors

6.4.1 Original RPA condition

The RPA normalization factors are provided recurring, again, to the sole QBA from Eq. (6.42), such that
the original condition reads as
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!]|HFi . (6.58)

The explicit writing of the phonons according to Eq. (6.41) eventually leads to
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which is the obvious result for RPA states.

6.4.2 Straightforward Projection

If, in line with what has been previously done in Sec. 6.3.3 for the transitions amplitudes, we directly
proceed with the insertion of a projector before invoking a commutator, the following result is obtained

hRPA|Q!P
J!
Kph,Kph

Q†! |RPAi = hRPA|[Q!P
J!
Kph,Kph

,Q†!]|RPAi

⇡ hHF|[Q!P
J!
Kph,Kph

,Q†!]|HFi . (6.60)

In the J=0 case d000 =1: we are superimposing configurations 
that are simply rotated.
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• Since the 1980s, there has been big progress in our 
understanding of the ISGMR (e.g., regarding model 
dependence, relativistic vs. nonrelativistic etc.)

• We have developed a fully self-consistent QRPA+QPVC 
model in which the “puzzle” of Sn vs. Pb appears to be 
solved.

• The EDFs that reproduce the ISMGR energies in Ca, Zr, 
Sn and Pb have K∞  equal to 226 MeV and 229 MeV.

• We are dealing with deformed nuclei by implementing 
projection on top of QRPA.
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4

FIG. 5. (Color online) ISGMR strength functions in 90Zr cal-
culated either by (Q)RPA using a smoothing with Lorentzian
functions having a width of 1 MeV (dash dot [black] line),
or in (Q)RPA+(Q)PVC (solid [blue] line). The SV-K226
Skyrme force is used. The experimental data are given by
green crosses [4].


