

ALMA MATER STUDIORUM Università di Bologna

Measurement of the neutron capture cross section of the s-only ¹⁵⁴Gd isotope

Cristian Massimi

Department of Physics and Astronomy

On behalf of the n_TOF Collaboration

Outline

Motivation: Why? How? Where? When?

Data reduction (A. Mazzone)

Study of the sample (R. Mucciola)

Analysis of:

- Resolved Resonance Region (RRR) up to 2.7 keV
- Unresolved Resonance Region (URR) up to 200 keV
- HF calculation and extrapolation above 200 keV (A. Mengoni)

MACS & Results (M. Busso, S. Cristallo e D. Vescovi)

¹⁵⁴Gd s-only isotope: it can be produced only via s process because it is are shielded against the β -decay chains from the rprocess region by the isobar samarium ¹⁵⁴Sm

¹⁵⁴Gd s-only isotope: it can be produced only via s process because it is are shielded against the β -decay chains from the rprocess region by the isobar samarium ¹⁵⁴Sm

Author / libraryMACS @ 30 keV (mb)ENDF/B-VII (2011)953.3 +/- 37.0JENDL-4.0 (2010)992JEFF-3.1 (2005)862Wisshak (1995) $1028 +/- 12 \rightarrow 1088$ Beer (1988)878 +/- 27Shorin (1974) $1278 +/- 102 \rightarrow 1184$

Why

Istituto Nazionale di Fisica Nucleare

How, where, when

ORNL 0.263 g - 1.414E-4 a/b metal disc ¹⁵⁴Gd ~ 66,78 % main contaminant ¹⁵⁵Gd ~ 17.52% Radius = 1.5 cm

GOODFELLOW 8.749 g Natural Gd 99%

@ EAR1 (FP=184 m)Total detection energy system:

- PHWT
- $4 C_6 D_6$ from LNL-INFN

Normalization and Background: Au, Pb, Gd with FILTERS

How, where, when

How, where, when

Data reduction

Background

method	Normalization
Au	0.865
¹⁵⁵ Gd (17.5%) in ¹⁵⁴ Gd sample	0.95-0.97
¹⁵⁵ Gd (20.2%) in ¹⁵⁴ Gd sample	0.865

- Different WFs
- Different discrimination levels
- Different upper cuts
- Normalization (SiMom, protons) Were checked... what else?

ALMA MATER STUDIORUM Università di Bologna

RRR

RRR

Analysis

MACS Maxwellian Averaged Cross Section

LISTITUTE OF LISTING AND LISTITUTE OF LISTING AND LIST

MACS Maxwellian Averaged Cross Section

Results & conclusions

- $n+^{154}Gd \rightarrow ^{155}Gd + \gamma$ studied at n_TOF from ~1 eV to 200 keV + extrapolation at higher energy with HFSM
- Crucial/auxiliary **Transmission** experiment at GELINA
- MACS (uncertainty ~7%) in the region of interest to s process is 10-20% lower than KADoNiS
- Preliminary model calculation: impact on s-only ¹⁵⁴Gd isotope: its sprocess nucleosynthesis is enhanced ~ 6%

ALMA MATER STUDIORUM Università di Bologna

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

MACS

Literature RRR

lsotope	Facility	Energy	Enrichment	Capture Detector	Transmission?
¹⁵² Gd	ORELA DUBNA	< 2.6 keV < 235 eV	32% 36%	C ₆ F ₆ Nal	yes yes
¹⁵⁴ Gd	Nevis Lab ORELA DUBNA	< 1 keV < 2.6 keV < 224 eV	66 %	C ₆ F ₆ Nal	yes yes
¹⁵⁸ Gd	Nevis Lab DUBNA	< 10 keV < 2.4 keV		Nal	yes

Experiment

lectore	Ductors		
Isotope	Protons	hote	2.6×10^{18}
¹⁹⁷ Au	4×10^{16}	Cyclic – after calibration	
¹⁵⁴ Gd	1.88×10^{18}		
^{nat} Gd	2.3×10^{17}		
Carbon	4×10^{16}	From ⁸⁸ Sr and ⁸⁹ Y campaign	
Lead	1.2×10^{17}		
Empty	3.5×10^{17}		
Others	2.0×10^{17}	Filters bkg	

Full calibration (¹³⁷Cs, ⁸⁸Y, Am-Be and Cm-C composite γ-ray source) **every week**

14th August 2017 10th September 2017

Data reduction

Background

Data reduction

Background

Multiple scattering

~ negligible correction in the URR for ¹⁵⁴Gd

Data reduction

Multiple scattering

