Latest News and Physics Results of the Alpha Magnetic Spectrometer on the International Space Station

A. Oliva for the AMS-02 Bologna Group

INFN Bo, Assemblea di Sezione

AMS-02: Alpha Magnetic Spectrometer ¹

AMS-02: A TeV Multi-Purpose Spectrometer 2

AMS-02 separates hadrons from leptons, matter from anti-matter, chemical and isotopic composition from fraction of GeV to multi-TeV.

AMS-02: A TeV Multi-Purpose Spectrometer 3

AMS-02 separates hadrons from leptons, matter from anti-matter, chemical and isotopic composition from fraction of GeV to multi-TeV.

AMS is able to identify 1 positron from 10⁶ protons, unambiguously separate positrons from electrons up to a TeV.

AMS-02: Time-of-Flight

Built in Bologna. Bologna has full responsibility of the TOF (operations, calibrations).

AMS on the International Space Station

From May 19th 2011 active on ISS, operating continuously since then. AMS has collected > 150 billion cosmic rays up to today. With such a statistics the most rare components of the cosmic rays are visible.

Altitude~ 400 kmInclination~ 51°Period~ 93 minConstruction1998-...Dimension78 × 109 m²Weight420 t

The Tracker Thermal Control System (TTCS)

A mechanically pumped double phase CO₂ cooling system

Problems with pumps since 2014. To extend AMS lifetime, in the last 5 years, we designed and realized a new pump block (UTTPS). NASA developed tools and procedures to install it.

EVAs Preparation: Astronauts Training

95 simulations (ARGOS + NBL), more than 7 astronauts involved.

EVAs Preparation: Shipping to the ISS

Astronauts: Luca Parmitano, Drew Morgan, Alexander Skvortsov

EVA Tools

UTTPS

EVA #1: Gaining Access

L. Parmitano dismounting the *debris shield*

15/11/'19

EVA #2: Tube cutting

5888

Tube cutting

22/11/19

00

6 Cap Recent 1000

Tube

6

EVA #3: UTTPS Installation

Transport

Reconnecting fluid lines

02/12/19

The UTTPS mounted on AMS

UTTPS

EVA #4: Leak Check

AMS Activation

"AMS is fully operational as of a few moments ago. This is the first run after the UTTPS installation in EVA-4. From now on, we will continue to collect data for the lifetime of the ISS." (S.C.C. Ting, AMS-02 P.I.)

 Particle TrTofTrdTrdHRichRichB
 Q = 1
 M = (-8 ± 2)
 GeV/c²
 P = (24 ± 2)
 GeV/c

 TrigLev1: TofZ>=1 4of4, TofZ>1 unkn, EcalFT
 No, EcalLev1 0, TimeD[ms]
 3.14 LiveTime
 0.00, PhysTr=|uTf:0|Z>=1:1|Ioh:0|Slon:0|e:0|ph:0|uEc:0|

AMS-02 Reloaded

14

In occasione del rientro di Luca Parmitano (ESA) dalla Stazione Spaziale Internazionale, discuteremo in un seminario divulgativo e in una diretta in videoconferenza lo stato di AMS-02 dopo le 4 passeggiate spaziali di riparazione

INFN

TIFPA

ERN

Giovedì 6 Febbraio Ore 14:00 – 15:30 Aula Magna del Dipartimento di Fisica e Astronomia, Via Irnerio 46, Bologna

BICOCCA

Primary and <mark>Secondary</mark> Cosmic Rays

Cosmic rays **primaries** are mostly produced at astrophysical sources (ex. e⁻, p, He, C, O, ...), **secondaries** (ex. Li, Be, B, ...) are mostly produced by the collision of cosmic rays with the ISM.

Cosmic rays are commonly modeled as a relativistic gas diffusing into a magnetized plasma. Diffusion models based on different assumptions predict a Sec/Pri ratio asymptotically proportional to \mathbb{R}^{δ} . With Kolmogorov turbulence model a $\delta = -1/3$ is expected, while Kraichnan theory leads to $\delta = -1/2$.

AMS Primary and Secondary Fluxes

CR Chemical Composition with AMS

Indirect Search of Dark Matter with CR Anti-Matter¹⁸

Collisions of dark matter particles (ex. neutralinos) may produce a signal of e⁺, p̄, D̄, ... that can be detected above the background from the collisions of primary CRs on interstellar medium

AMS Positron Flux

Origin of Positrons

New Astrophysical Sources: Pulsars, ...

Positrons from Pulsars

Dark Matter

Positrons from Dark Matter

Electrons

Dark Matter

Supernovae

Protons, Helium, ... 20

Interstellar Medium

Positrons from Collisions

Positron Excess from Dark Matter

Projection of Positron Excess to 2028

Positron Excess from Pulsars

^{↓ −3 −2 −1 0 1 2 3 4 5} Significance [sigmas]

e⁺ + e⁻ Flux

AMS-02

Spectrometer & EM Calorimeter

EM Calorimeter

Cherenkov Telescope

AMS Anti-Proton Flux

AMS Anti-Proton Flux

Solar Physics with AMS-02

Not a sunspot

Image Credits: APOD 15 July 2019

Space Radiation with AMS-02

Space travel needs cosmic rays high-Z flux measurements, as a function of time and energy.

AMS has been operating in the Space Station since May 2011 performing **precision measurements of cosmic rays** and revealing new details about origin and propagation of all CRs species.

A new pump system have been installed extending AMS lifetime of to the ISS lifetime.

With its unprecedented statistics and accuracy, AMS has an unique capability to detect **antimatter in cosmic rays** and study its properties.

AMS is the **only operating spectrometer in space**, and will continue to collect and analyze data for the lifetime of the Space Station.