Attività gruppo LHCb Bologna

Stefano Perazzini

Assemblea di Sezione – Bologna, 20 Febbraio 2020

Composizione del gruppo

- Ricercatori INFN
 - Umberto Marconi 100%
 - Vincenzo Vagnoni 100%
 - Cindolo Federico 20%
 - Stefano Perazzini 100%
 - Gianni Valenti
 0% Senior
- UniBo
 - Angelo Carbone 100%
 - Domenico Galli 100%
 - Claudia Patrignani 100%
 - Stefano Zucchelli 60%

- Dottorandi
 - Daniele Manuzzi 100%
 - Serena Maccolini 100%
 - Flavio Pisani 100%
- Post-doc
 - Fabio Ferrari 100%
 - Federico Betti 100%
 - Lorenzo Capriotti 100%
- Tecnici INFN
 - Gabriele Balbi 30%
 - Daniela Bortolotti 20%
 - Gianluca Peco 40%

Tot. FTE (esclusi tecnici) 12.8

Responsabilità del gruppo in LHCb

- − Serena Maccolini → Liaison simulazione charm WG
- Fabio Ferrari → Convener charm CPV & Mixing
- Federico Betti → Convener charm CPV & Mixing
- Lorenzo Capriotti \rightarrow
- Convener B-hadron and quarkonia
- − Stefano Perazzini → Responsabile Nazionale Calcolo
- Vincenzo Vagnoni → Upgrade-2 planning group

Attività del gruppo

Analisi dati	Computing/DAQ	R&D
 Pubblicazioni con contributo diretto di Bologna 2018/2019 2 Phys.Rev.Lett. 3 Phys.Rev.D 1 Phys.Lett.B 1 EPJC Di cui 6 come contact author 	 LHCb upgrade Sviluppo del software per l'event builder (DAQ) Trasferimento dati dal detector alla farm di trigger Data Quality Monitoring per il RICH 	 Timespot Sensori silicio 3D per la misura spazio-temporale di tracce Simulazione veloce del rivelatore di vertice LHCb Ricostruzione realtime di segmenti di traccia su FPGA
Non solo LHCb	 Terza missione Masterclass 	Calorimetria Partecipazione allo
Attività di R&D per l'esperimento MuONE	 LHCb-Starterkit Notte dei ricercatori Pint-of-Science Vari seminari divulgativi 	sviluppo di un calorimetro con misura temporale per Upgrade-2 di LHCb
	 Unijunior e Alternanza Scuola Lavoro (ASL) 	3

 LHCb è uno dei 4 esperimenti principali del Large Hadron Collider

https://www.behance.net/gallery/67661801/The-incident-at-the-Large-Hadron-Collider-experiment

Circa 1300 membri (non solo fisici) da 80 istituti in 18 nazioni

https://www.behance.net/gallery/67661801/The-incident-at-the-Large-Hadron-Collider-experiment⁵

Rivelatore LHCb

- Il rivelatore LHCb è uno spettrometro a singolo braccio in avanti
 - Accettanza geometrica ottimizzata per sfruttare le sezioni d'urto di produzione in avanti di adroni con quark beauty e charm
 - $\sigma_{bb} = 144 \pm 1 \pm 21 \ \mu b$ in accettanza [PRL 118(2017)052002]
 - σ_{cc} ~ 20 x σ_{bb}

- Il rivelatore LHCb è uno spettrometro a singolo braccio in avanti
 - Accettanza geometrica ottimizzata per sfruttare le sezioni d'urto di produzione in avanti di adroni con quark beauty e charm
 - $\sigma_{bb} = 144 \pm 1 \pm 21 \ \mu b$ in accettanza [PRL 118(2017)052002]
 - σ_{cc} ~ 20 x σ_{bb}
- Caratteristiche fondamentali del rivelatore
 - Ottima risoluzione spaziale dei vertici primari e secondari
 - → σ_z ~ 100 μm
 - Ottima risoluzione in impulso

→ δp/p ~ 0.4-0.6 %

 Eccellente identificazione delle particelle cariche

- Integrati circa 9 fb⁻¹ a varie energie fino al 2018
- LHCb ha operato in condizioni di $\mathcal{L} = 4x10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Luminosità livellata
 - Circa x2 \pounds di progetto

L'obiettivo di LHCb

- Osservare in maniera indiretta nuove particelle o nuove interazioni non previste nel Modello Standard:
 - Approccio complementare rispetto agli altri esperimenti di LHC
 - Invece di cercare nuove particelle prodotte direttamente nello scontro tra protoni o ioni si effettuano misure di precisione delle proprietà delle particelle note

Ogni banda colorata è la misura di un particolare parametro della matrice CKM ottenuto studiando le proprietà dei decadimenti di adroni con quark strange, charm e beauty

Attività di analisi dati (Studio decadimenti di adroni B)

- Famiglia dei decadimenti di B^0 , B^0_s e Λ^0_b in due adroni carichi (π , K e p)
- Parametri di violazione di CP sensibili a diversi elementi della matrice CKM e a contributi di nuova fisica
 - Opportunità unica di confronto con le stesse quantità misurate da decadimenti privi di contribute da "loop"

Principali diagrammi di decadimento

Miscelamento dei mesoni B neutri

All'interno dei loop è possibile violare la conservazione dell'energia Possono comparire nuove particelle molto pesanti

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012
 - Asimmetrie dirette di CP

Prima osservazione di violazione di **CP nel mesone B**_s

CP violation observed in the decays of B^o_s mesons

observation of CP violation in charged B-meson decays, B[±]→ DK[±]. Now, just over a year later, the collaboration has announced a similar observation in the decays in another B meson, in this case the B⁰ meson composed of a beauty antiquark b bound with a strange quark s. This first observation of CP violation in the decays $B^0_s \rightarrow K^-\pi^+$ with a significance of more than 5σ marks the first time that CP violation has been found in the decays

of B^0_s mesons – only the fourth type of meson where this effect has been seen. It is an important milestone for LHCb because the precise study of B⁰ decays is sensitive to possible physics beyond the Standard Model.

The study of CP violation in charmless charged two-body B decays provides stringent tests of the Cabibbo-Kobayashi-Maskawa picture of CP violation in the Standard Model, However, the presence of hadronic contributions means that several

Fig. 1. The analysis studied the decays of B^0 and B^0_{\circ} mesons into K and π mesons. In this event a decay produces a negative K (red track) and a positive π (green track).

samples of B⁰ decays and, despite much effort by the CDF collaboration at Fermilab's Tevatron, CP violation had until now not been seen in $B^0_s \rightarrow K^-\pi^+$ with a significance exceeding 5o.

Using a data sample corresponding to an integrated luminosity of 10 fb-

Phys. Rev. Lett. 110 (2013) 221601

- Responsabilità storica del gruppo di Bologna
- Tante misure di tipo LHCb $B^0 \rightarrow K\pi$ 4000 (b) (a) $B^0_{\mathfrak{s}} \to K\pi$ diverso con questi $B^0 \rightarrow \pi \pi$ 3000 $B^0_{c} \rightarrow KK$ B→3-body 2000 decadimenti Comb. bkg 10 MeV/*c*² 1000 • 8 articoli dal 2012 Candidates / (c) (d) Asimmetrie dirette di CP 300 Prima osservazione di violazione di 200 **CP nel mesone B**_s 100 CP violation observed in the decays of B^o_s mesons 5.2 5.3 5.4 5.5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.1 5.6 5.7 5.8 In March 2012, the LHC $K^{+}\pi^{-}$ invariant mass [GeV/c²] $\mathbf{K}\pi^+$ invariant mass [GeV/ c^2] collaboration reported an observation of CP violation **PDG review on CP violation** in charged B-meson decays, B[±]→ DK[±]. Now, just over a year later, the collaboration has announced a similar observation in the decays in another meson transitions to CP eigenstates like $J/\psi K_S$ is about 0.7 [2,3]. These effects are related to

 $K^0-\overline{K}^0$ and $B^0-\overline{B}^0$ mixing, but CP violation arising solely from decay amplitudes has also been observed, first in $K \to \pi\pi$ decays [4–6], subsequently in B^0 [7,8], B^+ [9–11], and B_s^0 [12] decays, and

charged two-body B decays provides stringent tests of the Cabibbo-Kobayashi-Maskawa picture of CP violation in the Standard Model. However, the presence of hadronic contributions means that several Tevatron, CP violation had until now not been seen in $\mathbb{B}^n_s \rightarrow K^-\pi^*$ with a significance exceeding 5 σ . Using a data sample corresponding to an integrated luminosity of 10 fh⁻¹

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012
 - Asimmetrie dirette di CP

$$A_{CP}^{pK^{-}} = -0.020 \pm 0.013 \pm 0.019,$$

$$A_{CP}^{p\pi^{-}} = -0.035 \pm 0.017 \pm 0.020,$$

 $\Delta A_{CP} = 0.014 \pm 0.022 \pm 0.010$

Phys. Lett. B784 (2018) 124 15

- Responsabilità storica del gruppo di Bologna
 - 5 MeV/c² – Tante misure di tipo LHCb 1500 diverso con questi 150 Candidates / (5 MeV/ c^2) LHCb decadimenti andidates / 100 1000 • 8 articoli dal 2012 B⁰_•→ K⁺K⁻X Comb. bkg. • Misure di BR e canali rari 500 BR = (7.8 ± 1.5) x 10⁻⁸ Pull 5.4 5.6 5.25.8
 - Phys. Rev. Lett. 118 (2017) 081801 16

m_{κ⁺κ⁻} [GeV/*c*²]

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012
 - Asimmetrie di CP dipendenti dal tempo

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012

Phys. Rev. D98 (2018) 032004

• Asimmetrie di CP dipendenti dal tempo

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012
 - Asimmetrie di CP dipendenti dal tempo

Articolo fenomenologico sulla determinazione dei parametri della matrice CKM γ e -2 β_s da queste misure

- Responsabilità storica del gruppo di Bologna
 - Tante misure di tipo diverso con questi decadimenti
 - 8 articoli dal 2012
 - Asimmetrie di CP dipendenti dal tempo

Misura di $|V_{cb}|$ con decadimenti semileptonici del B_s^0

 |V_{cb}| è uno dei parametri fondamentali per costringere il triangolo unitario e verificare l'unitarietà della matrice CKM

 $\Delta \chi^2 = 1.0$ contours

HFLAV

 $P(\chi^2) = 7.7\%$

43

Inclusive

1σ

40

41

42

Misura esclusiva

39

 $|V_{ub}|$: GGOU¹ $|V_{cb}|$: global fit in KS

 Storica discrepanza tra la determinazione inclusiva ed esclusiva di |V_{cb}|

 $\rightarrow \pi l \nu$

→puv

World Average

4.8

4.6

4.2

4

3.8

3.6 3.4

3.2 3

2.8 2.6

35

36

37

38

 $|V_{ub}| [10^{-3}]$

Misura di $|V_{cb}|$ con decadimenti semileptonici del B_s^0

• Analisi iniziata per misurare i fattori di forma dei decadimenti $B_s \rightarrow D_s^{(*)} \mu v$

$$\frac{\mathrm{d}^4 \Gamma(B \to D^* \mu \nu)}{\mathrm{d}w \,\mathrm{d}\cos\theta_\mu \,\mathrm{d}\cos\theta_D \,\mathrm{d}\chi} = \frac{3m_B^3 m_{D^*}^2 G_{\mathrm{F}}^2}{16(4\pi)^4} \eta_{\mathrm{EW}}^2 |V_{cb}|^2 \mathcal{A}(w, \theta_\mu, \theta_D, \chi)|^2$$
$$\frac{\mathrm{d}\Gamma(B \to D\mu\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 m_D^3}{48\pi^3} (m_B + m_D)^2 \eta_{\mathrm{EW}}^2 |V_{cb}|^2 |w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

Articolo sottomesso a PRD

• Utilizzo di una tecnica innovativa per ovviare alla non ricostruzione del neutrino

Misura di $|V_{cb}|$ con decadimenti semileptonici del B_c^0

Prima misura di $|V_{cb}|$ ad un collisionatore adronico e prima misura che utilizza decadimenti del B_s^0

Articolo inviato a PRD

Misura di $|V_{cb}|$ con decadimenti semileptonici del B_s^0

Attività di analisi dati (Studio decadimenti di adroni charm)

- Nel Modello Standard la violazione di CP nel charm è molto piccola
 - Necessità di altissima statistica
 - Necessità di utilizzare osservabili robuste rispetto ad errori sistematici e effetti sperimentali che possano mimare violazione di CP
- Misurare la differenza tra le asimmetrie di CP dei decadimenti $D^0 \rightarrow K^+K^- e D^0 \rightarrow \pi^+\pi^-$

$$\Delta A_{CP} \equiv A_{CP}(KK) - A_{CP}(\pi\pi) \qquad A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(D^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

Due metodi per separare $D^0 e \overline{D}^0$ $A_{raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to f)}{N(D^0 \to f) + N(\overline{D}^0 \to f)}$ $A_{raw}(f) = A_{CP}(f) + A_{tag} + A_{prod}$ Si cancellano nella differenza $K^ P^0$ P^0 $R^ P^0$ P^0 P^0 P^0

Run-2 data (6 fb⁻¹)

Phys. Rev. Lett. 122 (2019) 211803

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}$$

Combinazione con il risultato Run1

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Osservazione di violazione di CP con una significatività di 5.3σ

Incertezze sistematiche

Source	π -tagged [10 ⁻⁴]	μ -tagged [10 ⁻⁴]
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	_
B^0 fraction	_	1
B reco. efficiency		2
Peaking background	0.5	_
Total	0.9	5

Combinazione con il risultato Run1

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Osservazione di violazione di CP con una significatività di 5.3σ

Incertezze sistematiche

Source	π -tagged [10 ⁻⁴]	μ -tagged [10 ⁻⁴]
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	_
B^0 fraction	_	1
B reco. efficiency		2
Peaking background	0.5	_
Total	0.9	5

Run- $\Delta A'$ Al momento al lavoro sulla misura delle due asimmetrie separate $A_{CP}(K^+K^-) \in A_{CP}(\pi^+\pi^-)$ $\Delta A'_{CP} = [-9 \pm 8 \text{ (stat.)} \pm 5 \text{ (syst.)}] \times 10^{-1}$

Combinazione con il risultato Run1

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

Osservazione di violazione di CP con una significatività di 5.3σ

Incertezze sistematiche

Source	π -tagged [10 ⁻⁴]	μ -tagged [10 ⁻⁴]
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	
B^0 fraction	_	1
B reco. efficiency	_	2
Peaking background	0.5	_
Total	0.9	5

• Sfruttare l'interferenza tra il miscelamento e il decadimento per misurare il rapporto WS/RS in funzione del tempo

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t$$

• Sfruttare l'interferenza tra il miscelamento e il decadimento per misurare il rapporto WS/RS in funzione del tempo

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t$$

• Misurando il rapport separatamente per $D^0(R_D^+, x'^+, y'^+)$ and $\overline{D}^0(R_D^-, x'^-, y'^-)$ è possible misurare violazione di CP

$$-R_D^+ \neq R_D^- \Rightarrow$$
 violazione di CP diretta

- $(x'^{2+}, y'^{+}) \neq (x'^{2-}, y'^{-})$ ⇒ violazione di CP indotta dal miscelamento

 Sfruttare l'interferenza tra il miscelamento e il decadimento per misurare il rapporto WS/RS in funzione del tempo

• Sfruttare l'interferenza tra il miscelamento e il decadimento per misurare il rapporto in funzione del tempo

Misura di CPV nei decadimenti D_s \rightarrow K_s π^+ , D⁺ \rightarrow K_s π^+ e D⁺ \rightarrow $\phi\pi^+$

- Misura delle asimmetrie di CP nei decadimenti CS
 - Asimmetrie sperimentali eliminate facendo la differenza di A_{raw} con i decadimenti CF
 - Assunzione $A_{CP}(CF) \approx 0$

 $\mathcal{A}_{CP}(D_s^+ \to K_S^0 \pi^+) = (1.6 \pm 1.7 \text{ (stat)} \pm 0.5 \text{ (syst)}) \times 10^{-3},$ $\mathcal{A}_{CP}(D^+ \to K_S^0 K^+) = (-0.04 \pm 0.61 \text{ (stat)} \pm 0.45 \text{ (syst)}) \times 10^{-3},$ $\mathcal{A}_{CP}(D^+ \to \phi \pi^+) = (0.03 \pm 0.40 \text{ (stat)} \pm 0.29 \text{ (syst)}) \times 10^{-3}.$

Compatibile con assenza di violazione di CP

Altre attività di analisi

- Spettroscopia e ricerca di stati esotici
 - − Evidenza di una risonanza $\eta_c(1S)\pi$ nei decadimenti $B^0 \rightarrow \eta_c(1S)K^+\pi^-$

Altre attività di analisi

- Spettroscopia e ricerca di stati esotici
 - − Evidenza di una risonanza $\eta_c(1S)\pi$ nei decadimenti $B^0 \rightarrow \eta_c(1S)K^+\pi^-$

Attività DAQ per LHCb Upgrade1

L'Upgrade di LHCb

- Quasi un nuovo esperimento
 - Diversi sottorivelatori sono stati riprogettati quasi completamente per operare a luminosità istantanee x5 rispetto a Run1 e Run2

LHCb luminosity prospects

L'Upgrade di LHCb

- Quasi un nuovo esperimento
 - Diversi sottorivelatori sono stati riprogettati quasi completamente per operare a luminosità istantanee ~x5 rispetto a Run1 e Run2
 - Al fine di ottimizzare il trigger si è deciso di eliminare il livello hardware

42

DAQ per LHCb Upgrade

- Event building e trasferimento a farm trigger a 30 MHz
- Due reti separate
 - Event building
 - 500 port @ 80 Gb/s IN/OUT
 - Filter farm
 - 500 ports @ 80 Gb/s OUT _{Ev}
 - 2000 ports @ 20 Gb/s IN
- Soluzione proposta per rete EB
 - Mellanox InfiniBand (EDR/HDR)
- Soluzione proposta per rete EFF
 - 25/50/100/Gb/s Ethernet

DAQ per LHCb Upgrade

- Sviluppo e simulazione delle soluzioni di rete
 - Confronto del modello con dati reali provenienti da cluster HPC
 - Verificato il raggiungimento delle prestazioni necessarie

Attività di R&D su rivelatori

R&D su rivelatori

- Attività incentrata sulla ricerca di soluzioni per la fase di Upgrade2 di LHCb
 - Aumento di luminosità istantanea a 2x10³⁴ cm⁻²s⁻¹ → x10 luminosità istantanea Upgrade1

R&D su rivelatori

- Attività incentrata sulla ricerca di soluzioni per la fase di Upgrade2 di LHCb
 - Aumento di luminosità istantanea a 2x10³⁴ cm⁻²s⁻¹ → x10 luminosità istantanea Upgrade1

Circa 50 vertici primari per collisione

temporale per risolvere il pile-up

TIMESPOT

- Progetto INFN finanziato da CSN5 per realizzare un prototipo di apparato tracciante con ~10³ canali di lettura di pixel
 - * 55 μm di larghezza del pixel
 - Resistenza alla radiazione: 10¹⁶-10¹⁷ n_{eq}/cm² (sensore),
 > 1Grad (elettronica)
 - Risoluzione temporale < 50 ps
 - Ricostruzione delle tracce in tempo reale (throughput > 1TB/s)

Bologna, Cagliari, Genova, Ferrara, Firenze, Milano, Padova, Perugia, Torino, TIFPA

Risultati di un primo test beam mostrati martedi da M. M. Obertino (<u>link</u>)

TIMESPOT

TIMESPOT

- Contributo LHCb-Bologna
 - Dimostrare la fattibilità dell'utilizzo di TIMESPOT come soluzione tecnologica per il rivelatore di vertice di LHCb Upgrade2
 - Realizzato un primo modello di simulazione veloce basata su condizioni di LHCb-Upgrade1
 - Verificata la compatibilità simulazione parametrica $\leftarrow
 ightarrow$ simulazione completa
 - Procedere con lo studio nelle condizioni di Upgrade2
 - Studiare la possibilità di portare algoritmi di ricostruzione su FPGA

- Caratteristiche per il calorimetro EM in LHCb-Upgrade2
 - Resistenza alla radiazione ~1MGy
 - Mantenere una buona risoluzione in energia $\frac{\sigma(E)}{E} \approx \frac{10\%}{\sqrt{E}} + 1\%$
 - Incrementare la granularità delle regioni più interne
 - Risoluzione temporale O(10) ps per risolvere i vertici primari

- Opzioni tecnologiche
 - Shashlik: tecnologia nota, ma inadatta alle zone a più alta radiazione
 - SPACAL: ottimo dal punto di vista della resistenza alla radiazione e della ottimizzazione della granularità

SPACAL Test beam al DESY (2019)

Risoluzione energetica già ragionevolmente buona

Prototipo SPACAL

- Opzioni tecnologiche
 - Shashlik: tecnologia nota, ma inadatta alle zone a più alta radiazione
 - SPACAL: ottimo dal punto di vista della resistenza alla radiazione e della ottimizzazione della granularità

Risoluzione temporale ancora non ottimale (migliorabile)

Prototype	Bias [V]	Time Res. [ps]
SpaCal	630	85 [¢]
	730	78 [¢]
Shashlik	800	69
Small Shashlik	1000	66†
	1000	177 ^{°†}

[◊] Beam entering from the PMTs' side. [†]Noisy PMTs.

- LHCb Bologna
 - Studi con simulazioni veloci per stabilire i parametri necessari in termini di granularità e risoluzione temporale
 - Risoluzioni temporali dell'ordine di 10-20 ps sembrano necessarie per ridurre il fondo combinatorio a livello di Run1

- Inserire un timing layer in grado di misurare il tempo di arrivo delle particelle con precisioni di ~10-20 ps
 - Utilizzare rivelatori
 MCP (microchannel plate)
 - Idea già investigata in passato all'interno dell'INFN con il progetto di CSN5 i-MCP per Phase-2 HL-LHC

- Supporti e flange realizzati dall'officina meccanica
- Voltage divider e PCB anodici dal servizio di elettronica 56

MUonE

Measurement of the leading hadronic contribution to $(g-2)_{\mu}$ with μe elastic scattering at CERN with the M2 muon beam

Collaborazione internazionale

Istituti italiani: Bologna, Firenze, Milano, Padova, Pavia, Pisa, Trieste

Letter of Intent

G.Abbiendi, D.Galli, U.Marconi, C.Patrignani

MUonE

- Misura indipendente e complementare del contributo adronico al running di α e a (g-2)_{\mu}
 - Approccio standard ha raggiunto il proprio limite di precisione
 - MUonE mira ad ottenere una precisione su tali contributi simile o migliore
 - Contributo fondamentale alla precisione teorica sulla predizione di $(g-2)_{\mu}$

F. Jegerlehner, [arXiv1804.07409] "the very different Euclidean approaches, lattice QCD and the proposed alternative direct measurements of the hadronic shift $\Delta \alpha$ (-Q²) [MUonE], in the long term will be indispensable as complementary crosschecks."

MUonE

 Misura indipendente e complementare del contributo adronico al running di α e a (g-2)..

Attività di terza missione

Progetto europeo dedicato all'insegnamento della fisica

- Progetto finanziato da EC / AGENZIA
 NAZIONALE INDIRE
- Budget: ~370k euro
 - INFN come partner: ~ 40k euro
- Istituto coordinatore: UNIBO
- PI: Angelo Carbone
 - Collaborazione con colleghi di altri gruppi di Bologna e Università straniere
- Il progetto finanzia
 - Summer schools
 - Piattaforma di e-learning implementata con il contributo del CCL-INFN di Bologna

for Physics technische universität dortmund INFN Clermont ALMA MATER STUDIORUN Università di Bologna Auverane V 2 P 3 NATIONAL DE PHYSIQUE NUCLÉAIRI DE PHYSIQUE DES PARTICULES

Co-funded by the Erasmus+ Programme of the European Union

Tandem project

Educating The Future Tandem Project

- Affiancamento di studenti con ricercatori per fare attività di ricerca
 - 16 studenti UNIBO
 - 3 studenti non-EU: Bogotà, Mosca, Melbourne
 - 11 Progetti
 - 6 ECTS riconosciuti da UNIBO
 - Supervisori di Bologna: Carbone
 A., Capriotti L., Franchini M.,
 Maltoni F., Negrini M., Sioli M.,
 Perazzini S.

	Students	Supervisors		Students	Supervisors
TP-1	Celeste Ottaviani (UNIBO) Elaf Musa (UCA)	J. Erdmann (TUD) M. Negrini (UNIBO)	TP-7	Erik Kamlyk (HSE) Jude Fleurime (UCA) Miriam Schwarze (TUD)	S. Perazzini (UNIBO) U. Egede (MONASH) D. Derkach (HSE)
TP-2	Gianluca Bianco (UNIBO) Irene Cagnoli (UNIBO) Florian Mausolf (TUD) Aaron Vandergraaf (TUD)	O. Nackenhorst (TUD) M. Franchini (UNIBO) J. Albrecht (TUD)	TP-8	Tommaso Fulghesu (UNIBO) Mattia Paladino (UNIBO) Lars Kolk (TUD) Tom Magorsch (TUD)	L. Capriotti (UNIBO) G. Cavallero (CERN)
TP-3	Valentina Diolaiti (UNIBO) Carmine Fedele (UNIBO) Nicole Schulte (TUD)	K. Kröninger (TUD) S. Monteil (UNIBO)	TP-9	Linamaria Ortizparra (UNIBO) Eugenia Spedicato (UNIBO) Jonah Blank (TUD)	A. Carbone (UNIBO)
TP-4	Giacomo Levrini (UNIBO) Lars Roehrig (TUD) Ja Speer (TUD)	J. Erdmann (TUD) M. Franchini (UNIBO)	TP-10	Matteo Maranzano (UNIBO) Veronika Fedotova (UNIBO) Michele Mazzoni (UNIBO) Janlukas Spaeh (TUD)	F. Maltonii (UNIBO) K. Kröninger (TUD)
TP-5	Marco Lorusso (UNIBO) Fabian Koch (TUD) Michael Windau (TUD) Maria C. D. Sanchez (UNAL)	J. Albrecht (TUD) A. Carbone (UNIBO) D. Milanés (UNAL)	TP-11	Gianfranco Ingratta (UNIBO) Francesco Filippini (UNIBO) Janina Nicolini (TUD)	G. Hiller (TUD) J. Orfloff (UCA)
TP-6	Marcel Hohmann (UME) Hendrik Boekenkamp (TUD)	F. Scutti (UME) M. Sioli (UNIBO)			

Spring/Summer school di Cargese

VI edizione 4-8 Maggio 2020

Altre attività di terza missione

ndi e Lorenzo Cap

FINE