

Observing the ping-pong modality of isospin degree of freedom in cluster emission from heavy ion reactions

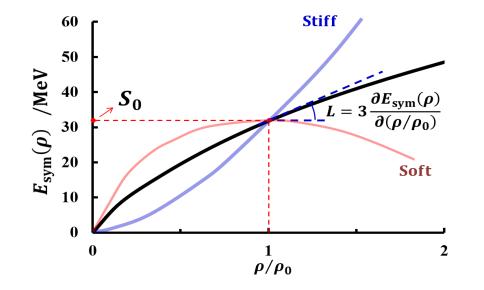
Zhigang Xiao

Department of Physics, Tsinghua University

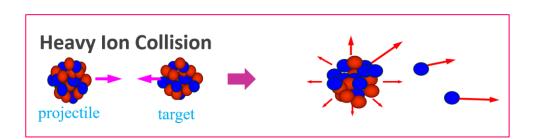
Outline

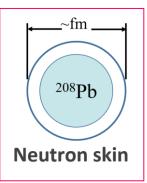
1. Introduction: Motivation

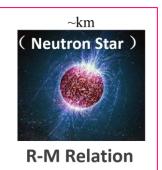
2. Experimental Setup

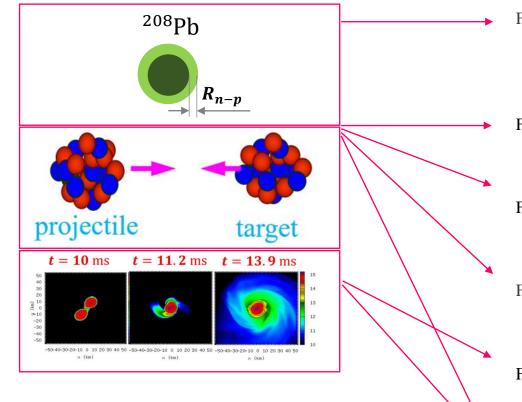

3. Results and Discussions

4. Summary


Nuclear EOS of asymmetric matter — $E_{sym}(\rho)$


Nuclear matter EOS:


$$E(\rho, \delta) = \frac{E_0(\rho)}{\text{Isoscale}} + \frac{\delta^2 E_{sym}(\rho)}{\text{Isovector}} \begin{cases} \delta = \frac{N-P}{N+P} \\ E_{sym}(\rho) = S_0 + L \frac{\rho - \rho_0}{3\rho_0} + \frac{K_{sym}}{2} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \frac{J_{sym}}{6} \left(\frac{\rho - \rho_0}{3\rho_0}\right)^3 \end{cases}$$


Review articles in last 5 years M. Colonna, **PPNP** 113,103775 (2020) B. A. Li et al., **Universe**,7, 182 (2021) M. Oertel et al., **RMP.**, 89, 015007 (2017) J. Xu, **PPNP** 106, 312 (2019)

Very Recent progress on constraining $E_{sym}(\rho)$

& Many talks on this symposium:

A. Levere	T. Isobe
W. Trautmann	S. Yennello
D. Cozma	G. Colo

.

From R_{n-p} (²⁰⁸Pb) and α_D PREX collaboration., **PRL** 126, 172502 (2021) B. T. Reed et al, S. Bassauer et al, **PRL** 126, 172503 (2021) **PRL** 126, 172503 (2021) **PLB** 810, 135804 (2020)

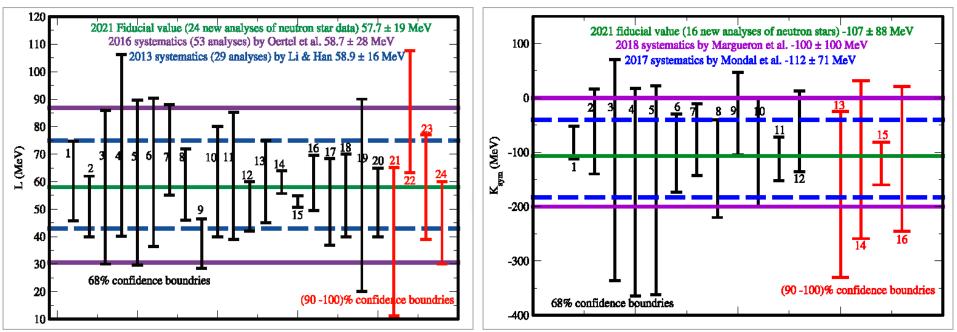
From HIRs:

Y. Zhang,... ZGX et al., **PRC** 95, 041602(R) (2017) Kaneko et al., **PLB** 822, 136681 (2022)

From n-H differential flow: Y. J. Wang **Frontiers of Physics**, 15,1 (2020) and references therein

From π⁻/π⁺
G. Hang et al, PLB 813, 136016 (2021)
J. Estee et al., PRL 126, 162701 (2021)

From GW170817:
Z. Y. Zhu et al., APJ 862,98 (2018)
W. J. Xie et al., APJ 883,174 (2019)
Y. Zhou et al., PRD 99 121301(R) (2019)

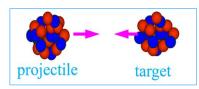

Combine GW170817 and HIC: Y.Y. Liu et al., **PRC** 103, 014616 (2021) S. Huth et al., **Nature**, 606, 276 (2022)

Review: B. A. Li et al., Universe 7, 182 (2021)

Fiducial Values of the $E_{sym}(\rho)$

Recent results on *L*

Recent results on *K*_{sym}



24 new analysis from the NS observables in comparison to 2013 and 2016 survey. In some tension with the recent PREX II results.

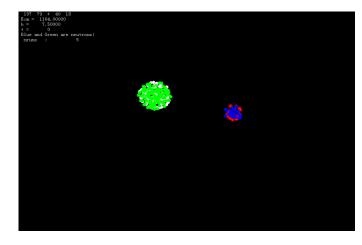
$$L=58\pm19$$
 MeV, $K_{
m sym}=-107\pm88$ MeV

Bao-An Li et al., Universe 7, 182 (2021)

Two fundamental questions in constraining $E_{sym}(\rho)$ in HIRs

Usually isobaric ratio as a probe, since n(-like) and p(-like) particles transport differently!

n/p, ³H/³He, π^-/π^+ , K⁰/K⁺, Σ^-/Σ^+ , Ξ^-/Ξ^0 Beam energy C. M. Ko's talk

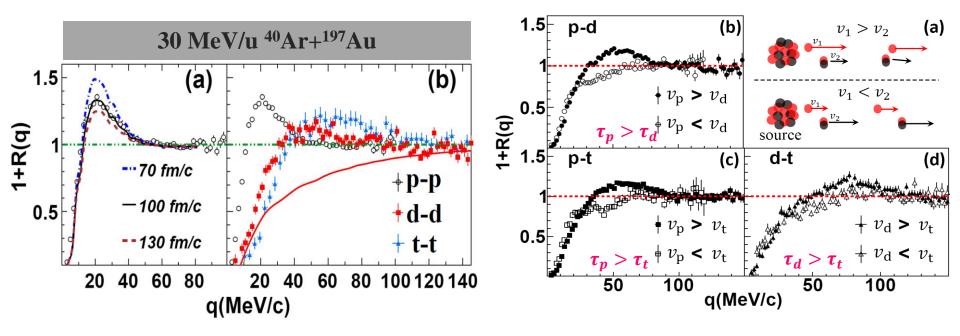

HIR is a non-equilibrium process in femtoscopic scale.

Q1: How does the isospin degree of freedom transport differently in HIRs?

Q2: What is the role of clustering in HIRs?

Both questions have to be understood before we obtain convincing and accurate $E_{sym}(\rho)$.

M. Colonna, **PPNP**, 113 (2020) 103775. S. Typel's talk

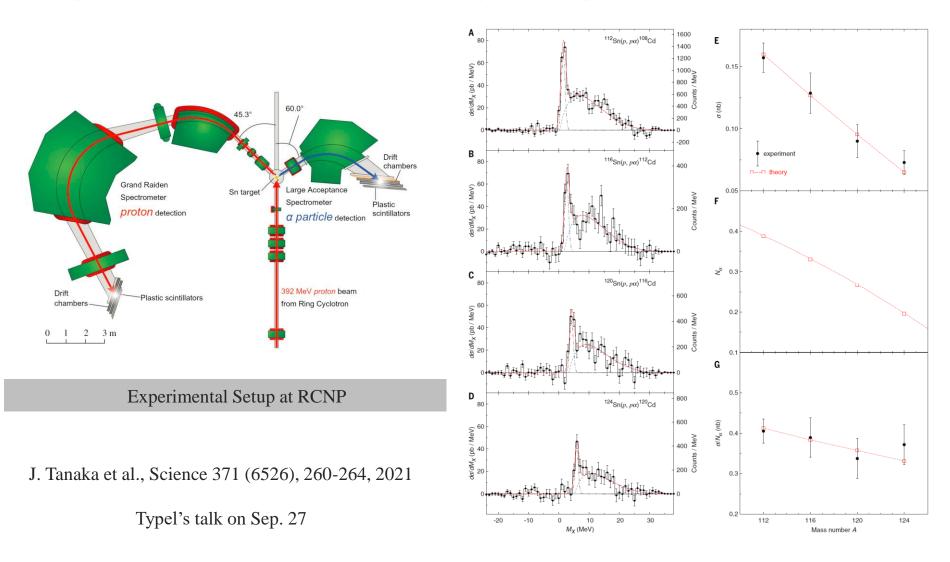


Theory: Modeling better the isospin dynamics and cluster formation; Experiment: Need more data to test and develop the theory, to find more isospin observables to constrain $E_{sym}(\rho)$

Isospin Chronology with CSHINE

Question 1 promotes lots of isospin chronology applications. For instance, using rotation angle as a clock, sub-zeptosecond chronology is implemented [A. Jedele et al, **PRL 118** (2017) 062501].

+ Recent results from HBT correlation function:


Velocity gated analysis can deduce the emission hierarchy of Z = 1 isotopes. Averagely, the neutron-rich tritons are emitted earlier than deuterons and protons: $\tau_p > \tau_d > \tau_t$.

Consistent with previous studies, $\tau_p > \tau_d > \tau_n$ [R. Ghetti et al., PRL 91, 092701 (2003).]

Y. J. Wang ... ZGX, PLB 825, 136856 (2022)

Influence of Cluster formation

^ASn(p, p α)^{A-4}Cd knock-out reactions, α cluster formation probability depends on the mass of the Sn isotopes, showing correlation to the neutron skin, and therefore to the symmetry energy.

Our motivation

Aiming at the two questions, Clustering and transport of isospin DOF, we are motivated to

- identify a fine signal featuring the transport of IDOF related to the emission of clusters, and a new isospin observable sensitive to $E_{sym}(\rho)$;
- illustrate how the IDOF evolves with the presence of cluster emission in heavy ion reactions.

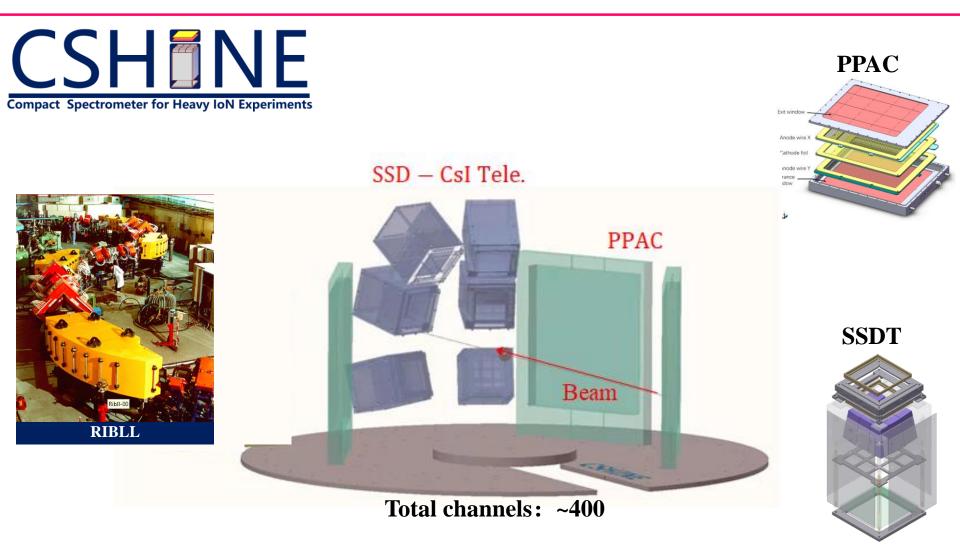
Our intended observables:

<u>t/³He</u> in coincidence with isotope-resolved heavy clusters [single isobaric ratio may loss the temporal information] [Heavy cluster is temporally correlated with LCP]

Reaction system:

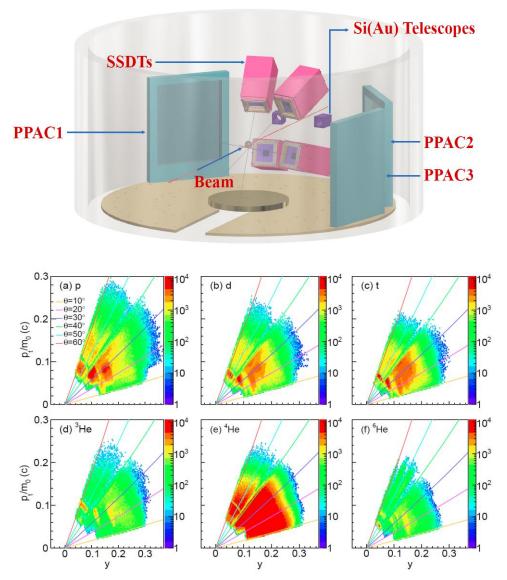
A heavy and neutron rich system: 86 Kr + 208 Pb at 25 MeV/u

Outline

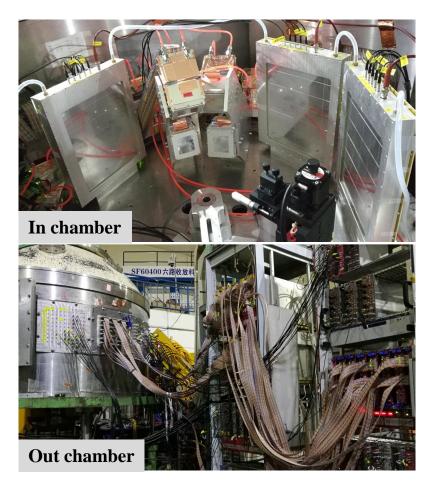

1. Introduction: Motivation

2. Experimental Setup

3. Results and Discussions

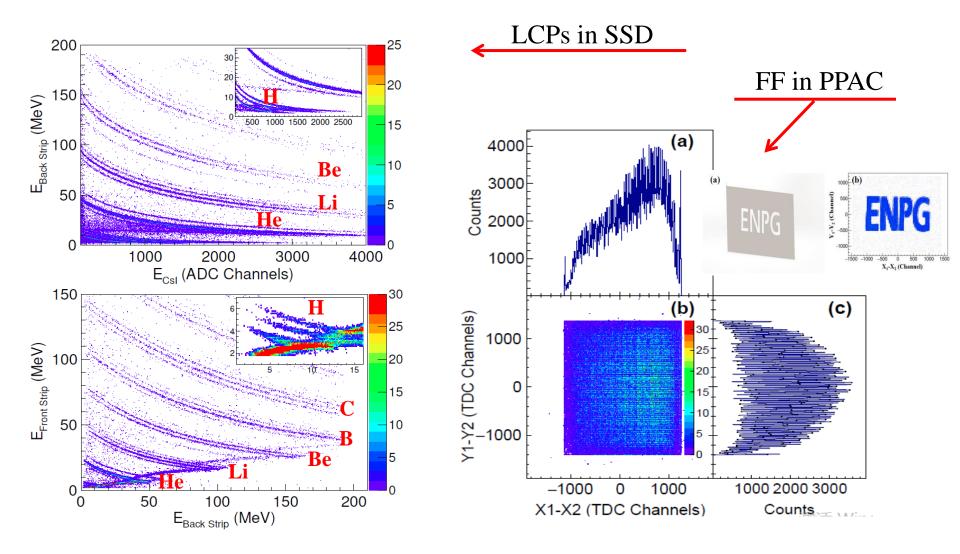

4. Summary

Detector setup of CSHINE


- Fission Fragments by PPAC: PPAC, $\sigma_{xy} \sim 1.3 \text{ mm}$, $\sigma_t \sim 300 \text{ ps}$ -LCP and IMFs by SSDT: $\sigma_{xy} \sim 0.5 \text{ mm}, \sigma_E \sim 2\%$

Experimental campaigns using CSHINE

-Exp-III: 25 MeV/u ⁸⁶Kr+²⁰⁸Pb

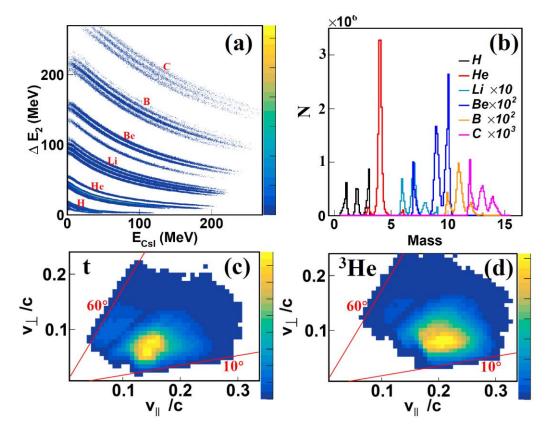

3 PPACs+ 4SSDTs + 2 Si(Au)

F. H. Guan ... ZGX, et al. NIMA 1029, 166461(2022)

Perfermance of CSHINE detectors

25 MeV/u ⁸⁶Kr+²⁰⁸Pb

F. H. Guan ... ZGX, Nucl. Inst. Meth. A 1011, 165592 (2021)


Analysis Scheme

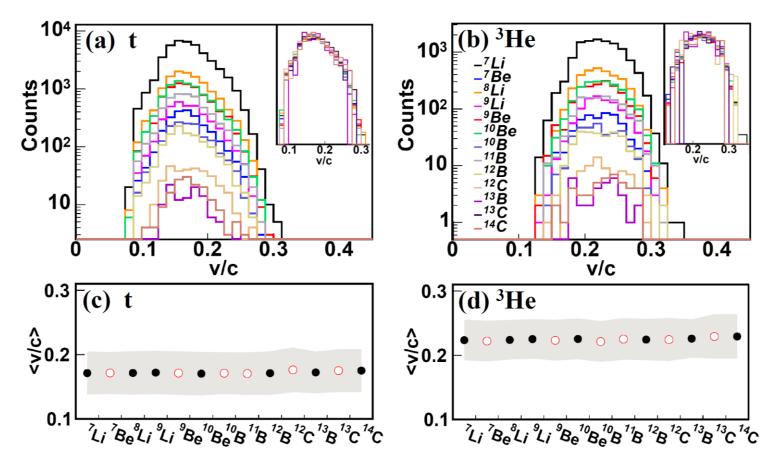
- Single isobaric ratio may loss temporal feature of the transport of isospin DOF;

- We analyze correlations of the light and the heavy clusters, both thermodynamically and chemically.

- Light cluster, F_L , A = 3 isobars;
- Heavy cluster, $F_{\rm H}$, $7 \le A \le 14$

- Focus on the products stopped in CsI hodoscopes.

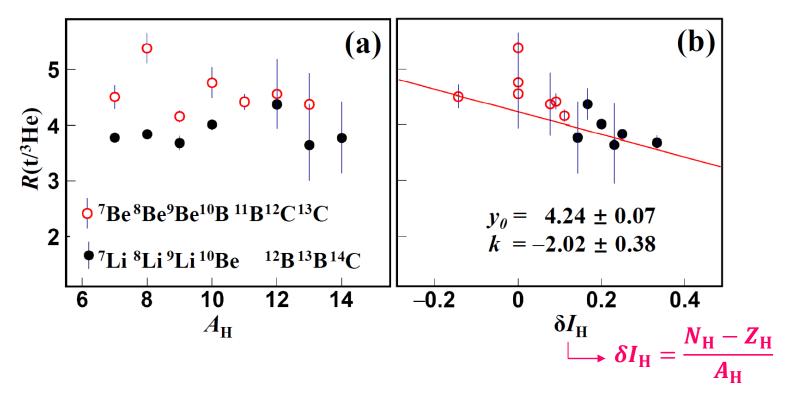
Outline


1. Introduction: Motivation

2. Experimental Setup

3. Results and Discussions

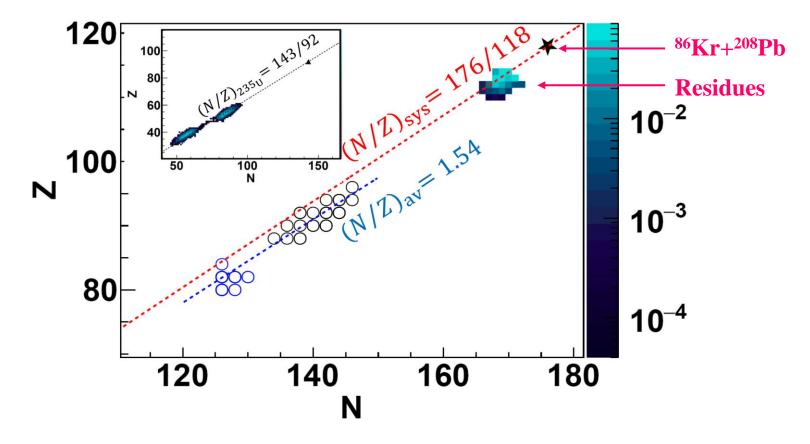
4. Summary


Thermodynamic correlation between light and heavy clusters

- Velocity Spectra of triton and ³He show scaling behavior over the type of the heavy clusters

- $\langle v \rangle$ and σ_v keeps constant against variation of F_H , for both triton and ³He
- Triton and ³He experience the same dynamic process.

Chemical correlation between light and heavy clusters



- $R(t/^{3}He)$ splits into two groups according to the N/Z of the heavy cluster (F_H);

- Ping-pong modality evident: F_H n-rich, $R(t/{^3}He)$ smaller; F_H n-poor, $R(t/{^3}He)$ larger

- $R(t/{^{3}}He)$ exhibits anti-correlation to δI_{H} , as a consequence of n and p conservation in such a finite system.

Commonality of the N/Z in cluster emission

- Counting the (Z, N) of the residue by subtracting F_L and F_H ;
- The residues situate on the line with N/Z = 176/118 = 1.49;
- Similar phenomena are observed in cluster decay and fission of super heavy nuclei;
- The commonality is extended to cluster emission in heavy ion reactions (high excitation).

Comparison to ImQMD Calculations

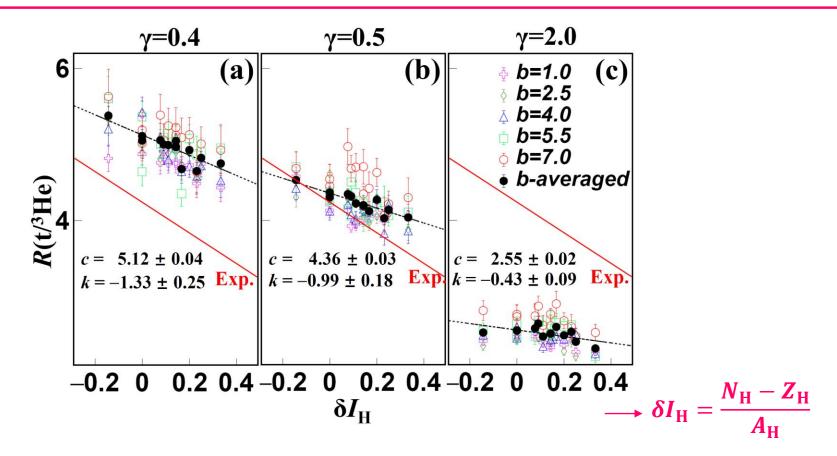
Model: ImQMD05 + Gemini

[Ying-xun Zhang, et al., Frontier of Physics, 15(2020)54301]

Equations of motion of the nucleons:

 $\dot{\vec{r}}_i = \frac{\partial H}{\partial \vec{p}_i}, \qquad \dot{\vec{p}}_i = \frac{\partial H}{\partial \vec{r}_i}$ $H = T + U, \qquad U = U_{nuc} + U_{Coul}$

The local nuclear potential energy density functional :


$$u_{\rho} = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{\eta + 1} \frac{\rho^{\eta + 1}}{\rho_0^{\eta}} + \frac{g_{sur}}{2\rho_0} (\nabla \rho)^2 + \frac{g_{iso}}{2\rho_0} \left[\nabla \left(\rho_n - \rho_p\right) \right]^2 + \frac{\mathcal{C}_s}{2} \left(\frac{\rho}{\rho_0}\right)^{\gamma_i} \delta^2 \rho + g_{\rho\tau} \frac{\rho^{8/3}}{\rho_0^{5/3}}$$

Where parameter set MSL0 is used [Phys. Rev. C 82 (2010) 024321.]

TABLE 1. Parameter set used in the ImQMD calculations.

α	β	η	$g_{ m sur}$	$g_{ m sur,iso}$	$g_{ ho au}$	$C_{\rm s}$	$ ho_0$
(MeV)	(MeV)		$(MeV fm^2)$	$(MeV fm^2)$	(MeV)	(MeV)	(fm^{-3})
-254.2	185.8	1.24	21.1	-0.82	5.51	35.90	0.160

Comparison to ImQMD calculations

- $R(t/^{3}He)$ depends slightly on b, significantly on γ ;
- The $R \delta I_{\rm H}$ anti-correlation is qualitatively reproduced, particularly at $\gamma = 0.5$; while $\gamma = 0.4$ or 2.0 are disfavored;
- Slopes are not quantitatively reproduced.

Summary

- ✓ Thermodynamic and chemical correlations are investigated in 25 MeV/u 86 Kr+ 208 Pb by analyzing the yield and kinetic variables of the *A* = 3 isobars in coincidence with the heavy clusters of 7 ≤ *A* ≤ 14.
- ✓ The velocity spectra of both t and ³He exhibit scaling behavior over the type of the heavy clusters; the yield ratio $R(t/{}^{3}\text{He})$ correlates reversely to the N/Z of the latter, showing the ping-pong motion modality.
- ✓ The commonality, that the N/Z of the residues keeps the initial system value, is extended to the cluster emission in heavy ion reactions.
- ✓ Transport model reproduce qualitatively, not quantitatively, the The $R \delta I_{\rm H}$ anti-correlation, which provides a new line to test the transport model in terms of the description of clustering and isospin dynamics.

Thank you for your attention.