Constraining positron emission from pulsar populations with AMS-02 data

Based on L. Orusa, S. Manconi, M. Di Mauro, FD 2107.06300, to appear in JCAP

Fiorenza Donalo

Torino University and INFN

Trieste, Solar Modulation and Dark Matter Workshop 18 Nov 2021

Introduction to the talk

• The positron flux shows (Pamela, AMS data) the need of primary source at high energies. Pulsars could do the job.

•HAWC has detected a TeV gamma-ray halo around Geminga and Monogem pulsars. Interpreted as e+e- accelerated by the pulsar, then released in the ISM

HAWC Coll. Science 2017

Sources of et in the Milky Way

Inelastic hadronic collisions (asymm.)
Pulsar wind nebulae (PWN) (symm.)
Supernova remnants (SNR) (only e+)
Particle Dark Matter annihilation (e+,e-)?

Detected et and et are local

$$\lambda^{2}(E, E_{S}) = 4 \int_{E}^{E_{S}} dE' \frac{D(E')}{b_{loss}(E')}$$
 Typical propagation length in the Galaxy

Manconi, Di Mauro, FD JCAP 2017

Most powerful sources within 3 kpc from the Sun. SNRs (e-) and PWN (e+e-)

e-, e+ have strong radiative cooling and arrive at Earth if produced within few kpc around it

Pulsars (PWN) as CR ete- sources

Pulsar wind nebulae (PWNe) as engines of et

- High magnetic fields (10⁹-10¹² G) extract wind of efrom the pulsar surface, e[±] pairs produced in EM cascades
- Pulsar spin-down energy (Wo) is transferred to et pairs, accelerated to very high energy with Q ~ E-Y.

After several kyrs et can be released in the ISM

 These et pairs radiate by IC and synch., and shine at many frequencies

$$E_{\rm tot} = \eta W_0 = \int_0^T dt \int_{E_1}^\infty dE E Q(E, t)$$

The total energy E_{tot} emitted in $e\pm$ by a PWN is a fraction η (efficiency conversion) of the spin-down energy Wo. Relevant parameters: γ and η

Multi-wavelength emission from Pulsars

 e[±] pairs accelerated by Pulsar Wind Nebulae (PWN) loose energy by inverse Compton scattering (ICS) on background photons (CMB, IR, VIS) and by synchrotron emission -> photon PRODUCTION

> A cascade of photons, in a broad E range. Now also in γ rays

•e[±] suffer strong radiative cooling -> they probe LOCAL Galaxy, typically < 5 kpc for E > 10 GeV

Discovers of y-ray halos in Fermi-LAT data

M. Di Mauro, S. Manconi, FD, PRD 2019;

M. Di Mauro, S. Manconi, M. Negro, FD, PRD 2021

Y-rays from Inverse Compton scattering

eHWC J1825-134

Simulating Galactic pulsar populations

Manconi, Di Mauro, FD PRD 2020

We predict e+ from pulsar ATNF catalog & from synthetic populations Within a 2-zones diffusion around pulsars compatible with HAWC data interpretation

From ATNF catalog

From simulations

There is a lower limit on PWN contribution.

Pair emission from pulsars

We assume continuous injection :

$$Q(E,t) = L(t) \left(\frac{E}{E_0}\right)^{-\gamma_e} \exp\left(-\frac{E}{E_c}\right) \qquad \qquad L(t) = \frac{L_0}{\left(1 + \frac{t}{\tau_0}\right)^{\frac{n+1}{n-1}}}$$

Normalized to:

$$E_{tot} = \eta W_0 = \int_0^T dt \int_{E_1}^\infty dE E Q(E, t)$$

Having:

$$\dot{E} = \frac{dE_{\rm rot}}{dt} = I\Omega\dot{\Omega} = -4\pi^2 I \frac{\dot{P}}{P^3} \,.$$

We can derive a relation for:

$$\tau_0 = \frac{P_0}{(n-1)\dot{P}_0}.$$

Constraining positron emission from pulsar populations with AMS-02 data

L. Orusa, S. Manconi, M. Di Mauro, FD 2107.06300, to appear in JCAP

We simulate Galactic pulsar populations

1000 simulations for 4 setups

Pulsar	Simulated	Benchmark	Variations
property	quantity		
Age	T	Uniform $[0, t_{max}]$	-
		CB20[39]	FK06[54]
	P_0	Gaussian [0.3s; 0.15s]	-
Spin-down	$\log_{10}(B)$	Gaussian [12.85G; 0.55G]	Gaussian [12.65G; 0.55G]
	n	Uniform [2.5-3]	Constant [3]
	$\cos \alpha$	Uniform [0-1]	Constant [0]
e^{\pm} injection	γ_e	Uniform [1.4-2.2]	-
	η	Uniform [0.01-0.1]	-
Radial	r	$ ho_L(r)$ [38]	$ ho_F(r)$ [54]
distribution			
Kick velocity	v_k	-	FK06VB [54]

+ diffusion schemes

Fil of Galactic pulsar populations to AMS-02 et data

The contribution of pulsars to e+ is dominant above 100 GeV and may have different features. For E>1 TeV: unconstrained by data. Secondaries forbid evidence of sharp cut-off

Effect of age and distance

on mock galaxies as selected by e+ AMS-02 data

1-3 kpc ring is the most fruitful in terms of e+ Interplay between spiral arms and propagation length

Few pulsars suffice

Very few ones, indeed

N(E) is the mean number of PWNe that produce a flux higher than the experimental flux error in at least one energy between above 10 GeV.

Typically 2-3 sources explain most of the measured flux (+ secs)

Characteristics of the (few) pulsars dominanti the AMS-02 flux

A Galaxy with 1-2 very powerful sources, with ages between 400 and 2000 kyr, located within 3 kpc from the Earth

We use AMS-02 data from charged CRs to put constraints on the properties of a Galactic population of pulsars

simulations are based on catalog data

Few, bright middle-aged pulsars can explain all the positrons we Observe above 100 GeV