

GRAN SASSO SCIENCE INSTITUTE

Unified Picture of Galactic CR Transport

Benedikt Schroer

Carmelo Evoli, Pasquale Blasi

November 18, 2021

- 2 Weighted Slab Model
- 3 Lighter Nuclei
- Intermediate-mass and Heavy Nuclei

Observations

Observations

Certain
 Elements are
 significantly
 more abundant
 in CRs
 compared to
 their
 abundances in
 the solar
 system

[http://www.srl.caltech.edu]

Benedikt Schroer (GSSI)

Solar Modulation and Dark Matter Workshop 2021

GS

Observations

- The overabundant elements show also a steeper spectrum than the other nuclei
- Interpretation of these observations: The secondary CRs are produced during CR transport via spallation processes

[AMS Collaboration 2021]

Benedikt Schroer (GSSI)

Solar Modulation and Dark Matter Workshop 2021

• Two fundamentally different approaches:

 Significant fraction of secondaries is produced via spallation processes in the source surroundings at high rigidities [D'Angelo et al. 2016; Mertsch et al. 2021] Most secondaries are produced via spallation in the Galactic disk during the CR transport [Evoli et al. 2020; Weinrich et al. 2020; Korsmeier, Cuoco 2021; Boschini et al. 2021]

G

• Two fundamentally different approaches:

- Significant fraction of secondaries is produced via spallation processes in the source surroundings at high rigidities [D'Angelo et al. 2016; Mertsch et al. 2021]
- Naturally explains the observed value and flatness of the positron to antiproton ratio [Lipari 2017]
- Most secondaries are produced via spallation in the Galactic disk during the CR transport [Evoli et al. 2020; Weinrich et al. 2020; Korsmeier, Cuoco 2021; Boschini et al. 2021]
- Successful in explaining many primary and secondary CR fluxes with few free parameters

G

Weighted Slab Model

Benedikt Schroer (GSSI) Solar Modulation and Dark Matter Workshop 2021

GS

GS

GS

GS

GS

GS

Benedikt Schroer (GSSI)

GS

Overview

- Same equation used by different groups with different approaches
- $\bullet\,$ E.g. Previous talk $\sim 13-17$ parameters [Korsmeier, Cuoco 2021] to fit light nuclei
- 5 7 parameters in [Weinrich et al. 2020] to fit light nuclei ratios from $\sim 1-10^3\,{\rm GV}$
- $\gtrsim 100$ parameters for [Boschini et al. 2021] describing all particle spectra from 1 MeV/nucleon to 100 500 TeV/nucleon
- Large part of these parameters are breaks introduced in the injection spectra of \sim 26 primary nuclei with 2 3 breaks each \rightarrow \sim 100 of parameters
- All models reach reasonable precision at AMS-02 rigidities, though differences arise mainly from different freedom in the cross section parametrisations leading to different conclusions (existence of primary Li vs. no need for it)
- With so many free parameters it is important to keep the underlying physics in mind

Our Model

Benedikt Schroer (GSSI)

Our Model

One can rewrite as equation in terms of grammage and flux $I_a(E) = 4\pi A p^2 f_a(p)$:

$$\frac{I_a(E)}{X_a(E)} + \frac{\mathrm{d}}{\mathrm{d}E} \left(\left[\left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{ad} + \left(\frac{\mathrm{d}E}{\mathrm{d}x} \right)_{ion,a} \right] I_a(E) \right) + \frac{I_a(E)}{X_{\mathrm{cr,a}}} = 2h \frac{A_a p^2 q_a(p)}{\mu v} + \sum_{a' > a} \frac{I_{a'}(E)}{m} \sigma_{a' \to a}$$

- where we introduced the critical grammage $X_{cr,a} := \frac{m}{\sigma_a}$ and the grammage traversed by nuclei a $X_a(E) := \frac{\mu v}{2v_A} \left(1 e^{-\frac{v_A H}{D}}\right)$
- Without energy losses $I_a(E) \propto E^{-\gamma+2}$ for $X_a(E) \gg X_{cr,a}$ and $I_a(E) \propto E^{-\gamma+2-\delta}$ for $X_a(E) \ll X_{cr,a}$
- ullet \Rightarrow Secondary over primary ratios flat at low E and \propto $E^{-\delta}$ at high E
- Solutions only sensitive to ratio $\frac{H}{D}$

CRAMS Code

$$\begin{aligned} \frac{I_{a}(E)}{X_{a}(E)} + \frac{\mathrm{d}}{\mathrm{d}E} \left(\left[\left(\frac{\mathrm{d}E}{dx} \right)_{ad} + \left(\frac{\mathrm{d}E}{dx} \right)_{ion,a} \right] I_{a}(E) \right) \\ + \frac{I_{a}(E)}{X_{\mathrm{cr,a}}} &= 2h \frac{A_{a}p^{2}q_{a}(p)}{\mu v} + \sum_{a' > a} \frac{I_{a'}(E)}{m} \sigma_{a' \to a} \\ \Rightarrow \Lambda_{1,a}(E)I_{a}(E) + \Lambda_{2,a}(E)\partial_{E}I_{a}(E) &= Q_{a}(E) \\ &\text{Solution:} \end{aligned}$$
$$(E) &= \int_{E} dE' \frac{Q_{a}(E')}{|\Lambda_{2,a}(E')|} \exp\left[- \int_{E}^{E'} dE'' \frac{\Lambda_{1,a}(E'')}{|\Lambda_{2,a}(E'')|} \right] \end{aligned}$$

code solves iteratively this equation starting from the heaviest isotope \sim 90 different isotopes from Ni-64 to H

la

GS

Fitting Parameters

 Spatial transport, including diffusion and advection, comprises 7 free-parameters: D₀, δ, v_A, H, R_b, Δδ, s:

$$D(R) = 2v_A H + \beta D_0 rac{(R/\mathrm{GV})^{\delta}}{[1+(R/R_b)^{\Delta\delta/s}]^s},$$

motivated by [Recchia et al. 2016]

- The injection efficiencies $\epsilon_{\rm a}$ of the species H, He, C, N, O, Ne, Mg, Si, S and Fe
- Injection slope γ , assumed to be the same for all of them without any break
- Solar modulation potential ϕ
- Total of 19 parameters
- Restrict ourselves to $R > 10 \,\text{GV}$ to reduce the impact of low-energy effects

Lighter Nuclei

Determining the Halo size

• For radioactive nuclei $X_a(E) \approx \frac{\mu v}{2} \sqrt{\frac{\tau_d}{D}}$ for $\tau_d \ll \min\left(\frac{H^2}{D}, \frac{H}{v_A}\right)$

- With our model a Halo size $H \ge 5$ kpc is preferred [Evoli et al. 2020]
- Influenced by cross section uncertainties
- Compatible with \sim 5 kpc found by [Weinrich et al. 2020] and a bit larger than 4 kpc by [Boschini et al. 2020] G
- In the following we fix H = 7 kpc in our model

Benedikt Schroer (GSSI)

S

Fit to light Ratios

S

Effect of Source Grammage/Reacceleration

Neglected effects like source grammage or reacceleration can improve high ۰ rigidity agreement

[Evoli et al. 2019], [Bresci et al. 2019]

Benedikt Schroer (GSSI)

Solar Modulation and Dark Matter Workshop 2021

S G

He and H Results

- H and He require a different slope than other nuclei and each other, confirms result of previous study [Evoli et al. 2019] and independently confirmed by [Weinrich et al. 2020]
- Puzzling result as only theoretical explanation for different slopes is due to different A/Z but then He should have the same slope as other primaries like O
- Raises the question: Is there an observable trend of the acceleration slope with particle mass?

G S S |

Benedikt Schroer (GSSI)

Intermediate-mass and Heavy Nuclei

Observation of Intermediate Mass Nuclei

- Note: He has same slope as O but suffers quite different spallation losses
 ⇒ needs to be injected with different slope
- All are primaries, but have different slope than lighter primaries like O
- Is this a confirmation of a mass dependent effect on the injection slope?

[AMS Collaboration 2020]

Benedikt Schroer (GSSI)

Intermediate-Mass Nuclei

AMS-02 AMS-02 AMS-02 isity [(m² s sr GV)⁻¹] [(m² s sr GV)⁻¹] [(m² s sr GV)⁻¹] 10 10-10 10 10-2 10-2 10-3 10-3 à 10-3 10-3 È 10-4 10-10-1 - In 10 10-3 10-2011/ 2018 2011/ 2018 2011/ 2018 Differenti 10 10-10-Differ Differ Neon Magnesium Silicon 10-10-10-0.25 0.25 0.25 nce 0.00 0.00 0.00 ue lip −0.25 -0.25 diffe Alfe 0.25 0.25 \$ 0.25 Relativ Relativ 0.00 0.00 0.00 -0.25 -0.25 -0.25 10 103 10² Rigidity [GV] 10 10² Rigidity [GV] 10² Rigidity [GV]

[Boschini et al. 2020]

Benedikt Schroer (GSSI)

Solar Modulation and Dark Matter Workshop 2021

S G

Intermediate-Mass Nuclei

- Fits to intermediate-mass nuclei with different slope for each nuclei (and breaks at R below 10 GV)
- $\bullet\,$ Difference in slope is of the order of \sim 0.04 compatible with the difference between H and He in our model
- Similarly C and O have a different slope of 0.03 to each other in this model

[Boschini et al. 2020]

GS

Our Results

- Requiring the same slope leads to reasonably good fits
- Possible tensions can be lifted with cross-section uncertainties (see Mg) and possibly source grammage plays a role as well G S

[Schroer et al. 2021]

Benedikt Schroer (GSSI)

November 18, 2021

Fit to the Ratios

Results

- Our model is compatible with all available data except AMS-02
- Fe data might require to incorporate a new or so far neglected effect into our model

Benedikt Schroer (GSSI)

GS

CALET Fe Measurement

- CALET measurement shows different normalization than AMS-02, but confirms slope
- However does not cover the part of the spectrum where we see the large deviations from our model and other experiments

[CALET Collaboration 2021]

Benedikt Schroer (GSSI)

GS

So far we tested different possible cavetas of our model:
Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for.

November 18, 2021

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of order 1% for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason.

G

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of order 1% for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason. Iron would need a 70% stronger modulation potential without any theoretical motivation
- Iron could have another injection slope

- Iron suffers severe energy losses, maybe ionization or spallation are not properly accounted for. Ionization has to be 5 times higher or spallation 40% larger to obtain a somewhat better fit
- The spallation inside the halo could become important Effect of halogrammage stays of order 1% for reasonable halo densities
- Maybe iron experiences slightly different solar modulation for some unknown reason. Iron would need a 70% stronger modulation potential without any theoretical motivation
- Iron could have another injection slope Does not give a satisfying fit either, also [Boschini et al. 2021] require a break at 355 GV in the iron injection spectrum in order to fit the data

November 18, 2021

Preliminary Results

Prediction for Na flux agrees perfectly

GS

Preliminary Results

 $\bullet~{\sf F}$ flux requires change in cross section of $\sim 15\%$ to reproduce measurement with same parameters

November 18, 2021

Preliminary Results

GS

Conclusion

- Many different groups with similar approaches able to fit AMS-02 data of lighter nuclei
- Cross section uncertainties play an important role for dectecting physical anomalies
- Our model is able to reproduce flux of all intermediate-mass to light elements using a single injection slope for all nuclei heavier than He reducing heavily the amount of free parameters compared to other studies like [Boschini et al. 2020] who fit all nuclei simultaneously
- Able to give predictions which are compatible with new data without refitting the model
- There seems to be an issue with Fe, that we still need to understand

Backup Slides

Best fit

 v_A 4.4 km/s D_0 2.48 ·10²⁸ cm²/s delta 0.56 H slope 4.375 He slope 4.31 nuclei slope 4.33 ϕ 0.49 GV H 7 kpc ddelta 0.22 s 0.09 R_b 290 GV

Fe/O CALET

GS