

Implications of Li to O data of AMS-02 on our understanding cosmic-ray propagation

Michael Korsmeier 18/11/2021

At first glance!

After the first talk!

No Avatars \rightarrow **We are back in person!**

- Introduction
- Global fit of CR data from Li to O
- CR antiprotons
- CR antideuteron
- Conclusion

Stockholm University and OKC

FERMI SHOCK ACCELERATION CR shocked medium $q \sim R^{-2.2}$ Vshock

$$\begin{aligned}
 V = -\vec{\nabla}\cdot\vec{j}
 \end{aligned}
 \end{aligned}$$

CR propagation is described by diffusion equations. We use the GALPROP code to solve them.

CR secondaries -> constrain propagation > constrain halo size

Stockholm University and OKC

BASE+v_A

$$rac{\mathrm{d}\psi}{\mathrm{d}t} = q(oldsymbol{x},p) + oldsymbol{
abla} \cdot (D_{xx}oldsymbol{
abla}\psi - oldsymbol{V}\psi) + rac{\partial}{\partial p}p^2$$

Stockholm University and OKC

We explore 5 different setups for CR propagation:

BASE $BASE+v_A$ **BASE**+inj

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+v_A-diff.brk **BASE**+inj+ v_A

BASE+v_A

$$rac{\mathrm{d}\psi}{\mathrm{d}t} = q(oldsymbol{x},p) + oldsymbol{
abla} \cdot (D_{xx}oldsymbol{
abla}\psi - oldsymbol{V}\psi) + rac{\partial}{\partial p}p^2$$

Stockholm University and OKC

We explore 5 different setups for CR propagation:

BASE BASE+v_A **BASE+inj**

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+ v_A BASE+inj+v_A-diff.brk

We explore 5 different setups for CR propagation:

BASE BASE+v_A **BASE+inj**

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+v_A-diff.brk **BASE**+inj+ v_A

BASE+inj+v_A-diff.brk **BASE**+inj+ v_A **BASE**+inj

Stockholm University and OKC

Michael Korsmeier

Global fit

We investigate five propagation setups and perform several consistency checks

We use MultiNest to sample the large parameter space of up to 27 parameters

Parameters for CR propagation and cross section nuisance parameters are sampled at the same time

7 /36

Results of the global fits

Results of the global fits

Stockholm University and OKC

Systematic uncertainty: fragmentation cross sections

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

Systematic uncertainty: fragmentation cross sections

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

We perform a global fit and profile over nuisance parameters in the most relevant fragmentation cross sections.

Systematic uncertainty: fragmentation cross sections

than those in the measured CR spectra!

nuisance p	arameters			
$\delta_{{}^{12}_{6}\mathrm{C} \rightarrow {}^{10}_{5}\mathrm{B}}$	$\delta_{{}^{16}_{8}{ m O} ightarrow {}^{11}_{5}{ m B}}$	$\delta_{{}^{12}_{6}\mathrm{C} \rightarrow {}^{11}_{5}\mathrm{B}}$		
$\delta_{{}^{12}_{6}\mathrm{C} \rightarrow {}^6_3\mathrm{Li}}$	$\delta_{{}^{16}_{8}\mathrm{O} o{}^{7}_{3}\mathrm{Li}}$	$\delta_{{}^{12}_{6}\mathrm{C} o{}^{7}_{3}\mathrm{Li}}$	/	
$\delta_{{}^{12}_{6}\mathrm{C} \rightarrow {}^7_4\mathrm{Be}}$	$\delta_{{}^{16}_{8}\mathrm{O} \rightarrow {}^{9}_{4}\mathrm{Be}}$	$\delta_{{}^{12}_{6}\mathrm{C} \rightarrow {}^9_4\mathrm{Be}}$		
$\delta_{{}^{16}_{8}{\rm O} \rightarrow {}^{12}_{6}{\rm C}}$	$\delta_{{}^{16}_{8}{\rm O} \to {}^{13}_{6}{\rm C}}$			
$\delta_{{}^{16}_{8}{\rm O} \to {}^{14}_{7}{\rm N}}$	$\delta_{{}^{16}_{8}{\rm O} \to {}^{15}_{7}{\rm N}}$			
$A_{^{12}6\mathrm{C} ightarrow^{10}5\mathrm{B}}$	$A_{{}^{16}_{8}{\rm O}\rightarrow{}^{11}_{5}{\rm B}}$	$A_{{}^{12}_{6}{\rm C} \to {}^{11}_{5}{\rm B}}$		
$A_{{}^{12}_{6}\mathrm{C} o{}^6_3\mathrm{Li}}$	$A_{{16\atop8}\mathrm{O} ightarrow{7\atop3}\mathrm{Li}}$	$A_{{}^{12}_{6}\mathrm{C} \rightarrow {}^7_3\mathrm{Li}}$		
$A_{{}^{12}_{6}\mathrm{C} o{}^7_4\mathrm{Be}}$	$A_{^{16}8O o _4^9Be}$	$A_{{}^{12}_{6}{ m C} ightarrow {}^{9}_{4}{ m Be}}$		R
$A_{16}_{8} O \rightarrow {}^{12}_{6} C$	$A_{^{16}8\rm O\to ^{13}_{6}\rm C}$			
$A_{16}_{8}O \rightarrow {}^{14}_{7}N$	$A_{16\atop 8}O \to {}^{15}_{7}N$		Ī	and profile o

's in the most nuisance paramete relevant fragmentation cross sections.

ver

9/36

Cross section nuisance parameters

uoco, 2021]

The default cross section parametrization is "GALPROP 12"

BASE is compatible with the default cross section

> BASE+inj+v_A-diff.brk converges at $\delta_{\rm XS}$ ~0.2

Li cross section are increased by ~25%

Cross section nuisance parameters

The default cross section parametrization is "GALPROP 12"

BASE is compatible with the default cross section

BASE+inj+v_A-diff.brk converges at δ_{XS} ~0.2

Li cross section are increased by ~25%

Cross section nuisance parameters

BASE

111

BASE

Stockholm University and OKC

Li cross section are increased by ~25%

Comparison: Li production cross sections

GALPROP cross sections: Li is rescaled by 1.26

Stockholm University and OKC

DRAGON2 cross sections: Li is rescaled by 0.97

See also: [Weinrich+ 2019; Boschini+ 2020]

11/36

Correlation in the cosmic-ray data of AMS-02

[Heisig, MK, Winkler; PRR; 2020]

The AMS-02 collaboration does not provide the **correlation** of the flux data points

Stockholm University and OKC

We model the covariance matrix by splitting the systematic uncertainties into separate contributions and attributing a correlation length to each contribution

> The inclusion of correlation does not change our conclusions!

$$\mathcal{V}_{ij} = \sigma_i \sigma_j \exp\left(-\frac{1}{2} \left(\frac{R_i - R_j}{\ell_{\text{corr}}}\right)^2\right)$$

Parameter constraints

The diffusion coefficient is well constrained above 10 GV

Parameter constraints

The combination of B and Be data allows to constrain z_h

2021] Cuoco, [MK,

Recent ¹⁰Be/⁹Be data from AMS-02

BASE

This is a *prediction*! The data is not included in the fit!

BASE+inj+v_A-diff.brk

Michael Korsmeier

15/36

Comparison: Constraints on the diffusion halo

See also: [Weinrich+ 2020]

CR nuclei from Li to O are consistent with the traditional CR diffusion models

Uncertainties in the secondary fragmentation cross sections prevent better understanding of propagation

Small halo heights of $z_h < 3$ kpc are disfavored and the diffusion coefficient is well constrained above 10 GeV

Part I: Summary

Introduction

- CR antiprotons
- CR antideuteron
- Conclusion

Outline

Global fit of CR data from Li to O

Motivation

Gravitational evidence at various scales is overwhelming.

Motivation

Gravitational evidence at various scales is overwhelming.

Nature of dark matter remains unknown!

Fuzzy DM	Axions	WIMPS	Primordi
			black hol
<u> </u>			
10-31	10-14	101	104
			MDM [GeV]

Gravitational evidence at various scales is overwhelming.

Nature of dark matter remains unknown!

- Mass range 1 GeV to 100 TeV
- Various search strategies
- We focus on indirect detection with **cosmic rays** and γ -rays

Primordi black ho	WIMPs	Axions	Fuzzy DM
10	101	10-14	10-31
MDM [GeV]			

Secondary antiprotons in cosmic rays

Secondary antiprotons in cosmic rays

Antiprotons from DM annihilation

Antiprotons from DM annihilation

Antiprotons from DM annihilation

$$\Big)^2 \frac{dN}{dE}$$

Fitting CR antiprotons

A hint for a DM signal?

Progressive interpretation:

- Hint for a potential DM signal at $m_{\rm DM} \sim 70 \; {\rm GeV} \; ({\rm for} \; bb) \; {\rm and} \; {\rm a}$ thermal annihilation cross section
- Statistical significance

$$(\Delta \chi^2 = 24 \rightarrow 4.5 \sigma)$$

• Systematic uncertainties are difficult to access

Conservative interpretation:

• We find strong limits on DM annihilation for $m_{\rm DM} > 200 {\rm ~GeV}$

Systematic uncertainties:

Correlation in the cosmic-ray data

Stockholm University and OKC

• Production cross section of secondary \bar{p} Solar modulation

Michael Korsmeier

23/36

Uncertainties in the production cross section

Stockholm University and OKC

2018

Mauro;

 $\overline{\Box}$

Donato

Σ Υ

 $q_{pp \to \bar{p}}(T_{\bar{p}}) = \int dT_p 4\pi n_{\text{ISM},p} \Phi_p(T_p) \frac{d\sigma_{pp \to \bar{p}}}{dT_{\bar{p}}}(T_p, T_{\bar{p}})$

- We update the best-fit parameters of the Winkler and Di Mauro parametrization
 - We derive uncertainty bands
 - The Winkler parametrization provides best agreement with cross-section data
 - Cross-section uncertainties are up to 20% at low energies (2σ C.L.)

Why correlations?

The typical χ^2 per degree of freedom is much smaller than 1 \rightarrow Hint for strong correlation among data points

Correlations of a few neighboring data points might reduce the significance of the *feature* in the \bar{p}/p ratio

$$\Phi_{\rm raw} \sim \exp\left(-nz \cdot \sigma_{\rm abs}\right) \Phi \longrightarrow \left(\frac{\Delta \Phi}{\Phi}\right) \approx nz \Delta$$

Stockholm University and OKC

Winkler; 2020]

Heisig, MK,

Φ

abs. XS

We modeled the antiproton absorption cross section in carbon to obtain correlated uncertainties

Φ

We take the "wiggliness" in the data/MC correction as a proxy for the correlation of the effective acceptance.

We take the "wiggliness" in the data/MC correction as a proxy for the correlation of the effective acceptance.

Correlation matrices

Stockholm University and OKC

Correlation matrix for \bar{p} data

28/36

	w/o corr.	with corr.
$\chi^2_{ m tot}$	20.3(27.2)	233.1(236.3)
$m_{\rm DM}[{\rm GeV}]$	76	66
$\langle \sigma v \rangle \left[10^{-26} \mathrm{cm}^3 / \mathrm{s} \right]$	0.91	0.74
$\Delta \chi^2_{ m tot}$	6.9	3.2
local sig.	2.6σ	1.8σ
global sig.	1.8σ	0.5σ

- 1. We model correlation in the CR data (focussed on absorption cross section and effective acceptance)
- 2. We consider uncertainties in the secondary \bar{p} production
- 3. We allow slightly more freedom in the CR propagation model

\rightarrow No significant preference for DM

ightarrow But the *interesting* $m_{
m DM}$ - $\langle \sigma v \rangle$ region cannot be excluded

Fit results

30/36

- Introduction
- **CR** antiprotons
- CR antideuteron
- Conclusion

Outline

Global fit of CR data from Li to O

Antideuteron in cosmic rays

DM

- (annihilation at rest)

Stockholm University and OKC

A complementary strategy: search for antideuteron

Stockholm University and OKC

The DM hint in antiprotons might be in the sensitivity range of the (future) cosmic-ray experiments **AMS-02 and GAPS.**

Perspectives for the future experiment GAPS

2020]

thesis

[MK, PhD

There might be a possibility to evade the limit. See: [Winkler, Linden 2020]

Impact of propagation on antideutrons

Reacceleration can slightly boost DM signal

See also: [Cholis+ 2020]

The combination of different species constrains CR propagation

CR antiprotons and antideutrons are a sensitive probe for DM

Systematic uncertainties are important and require a careful analysis:

- Fragmentation & production cross sections
- Correlations in the data
- Solar modulation

Conclusions

Thank you for your attention!

Accelerating the calculation of DM limits with RNNs

$$\tilde{\phi}_{s}(E) = \log_{10}(E^{2.7}\phi(E))$$

Stockholm University and OKC

Training Data: Chain of a MultiNest fit without DM

RNNs efficiently learn smooth spectra

$$f(x) = \log_{10}(m_{\rm DM}^3 x \phi(E))$$

38/36

Accelerating the calculation of DM limits with RNNs

DMNet

$$\tilde{\phi}_{s}(E) = \log_{10}(E^{2.7}\phi(E))$$

$$\tilde{\phi}_{\mathrm{DM}}($$

Stockholm University and OKC

sNet

We have developed tools to quickly derive DM limits for a large number of DM models

Recurrent Neural Networks are particularly well suited to predict CR spectra both for DM and the astrophysical background

 $(x) = \log_{10}(m_{\rm DM}^3 x \phi(E))$

'n

Steckholm University and OKC

Outlook

Light and "heavy" cosmic-ray nuclei point to slightly different propagation parameters

To combine cosmic-ray flux data from protons to oxygen we have to give up some universality

... work in progress with A. Cuoco

 $v_{0,c}$ [km/s]

