Long-term correlation between Solar activity and Cosmic-ray fluxes

Nicola Tomassetti

Università degli Studi di Perugia

Solar Modulation and Dark Matter Workshop 14-19 Novembre 2021 - IFPU Trieste, Italy

DIPARTIMENTO DI FISICA E GEOLOGIA

Università degli Studi di Perugia C.R.I.S.P. ASI-UniPG 2019-2-HH.0

What we have investigated

Cross-correlation between Solar activity [SSN] and Cosmic ray fluxes [Neutron Monitors] over [5] Solar Cycles [20-24]

Solar activity, Neutron Monitor rates, Cosmic-ray modulation the anticorrelation plot

In this talk >> New empirical relations >> New insights to CR transport

3

Solar activity, Neutron Monitor rates, Cosmic-ray modulation the anticorrelation plot

Time (year) 4

Relation between neutron monitor rates and varying cosmic-ray fluxes

Counting rate of neutron monitor "d" at epoch t

Modeling J(t,E) in the simplest way: FFA

When entering the heliosphere, CRs are slowed down by the expanding wind. Force-Field: *energy loss per charge unit* ϕ

Relation between neutron monitor rates and varying cosmic-ray fluxes

From ground: counting rates of different NIVIs at different locatio

NM station	NEWK	OULU	KIEL	JUNG	ROME
Detector type	9-NM64	9-NM64	18-NM64	3-NM64	20-NM64
Location	Newark US	Oulu FI	Kiel DE	Jungfraujoch CH	Rome IT
Coordinates	39.68 N 75.75 W	65.05 N, 25.47 E	54.34 N, 10.12 E	46.55 N, 7.98 E	41.86 N, 12.47 E
Altitude	50 m	15 m	54 m	3570 m	0 m
Cutoff	2400 MV	810 MV	2360 MV	4500 MV	6270 MV

From space: direct GCR flux measurements of various elements PAMELA [p, He] AMS / ISS [p, He] EPHIN / SOHO [p] CRIS / ACE (C) IMP-8 [He]

Solar activity and Cosmic-ray modulation

Solar activity and Cosmic-ray modulation

Lag between Solar activity and Cosmic-ray modulation

COSMIC-RAY MODULATION

$\phi(t)$ SSN(t)

Time Lag between Solar Activity and Modulation

The best correlation is between $\phi(t)$ and $SSN(t - \Delta T)$

NT+ 2017, ApJ 849 L32: we incorporated the lag in a numerical model of CR tranpsort in heliosphere. Using space CR data, we found: $\Delta T \approx 8 months$

Other studies with NM reported: $\Delta T \approx 0 \text{ to } 20 \text{ months}$ (?) Different lags from different cycles? ODD/EVEN effects? --

Time Lag between Solar Activity and Modulation

Time Lag between Solar Activity and Modulation

Time₁(year)

Evolution of the Lag over the Solar Cycle

✓ A lag ΔT of a few months improves the correlation between $\phi(t)$ and $SSN(t - \Delta T)$ ✓ The best time-lag parameter is seen to *evolve* over time, with the changing solar activity.

Evolution of the Laguorer the Solar Cycle

15

Evolution of the Laguorer the Solar Cycle

16

Evolution of the Lag over the Solar Magnetic Cycle

The time-lag appear correlated with the 22-yr magnetic cycle of the Sun. Different lags are observed under periods of negative or positive polarity

The solar Wind profile

radially symmetric wind

The solar Wind profile

latitudinal profile $V(\theta)$ based on data

The solar Wind profile

Cosmic rays from equators \rightarrow test a region with slow wind \rightarrow large Lag

Cosmic rays from poles \rightarrow test a region with fast wind \rightarrow small lag

Heliospheric B-Field

CRs experience drift motion through the large scale B-field of heliosphere, a magnetic dipole.

A+ positive polarity

CRs reach us passing from poles They encounter fast wind Short time lag: ~ 3-6 months A- negative polarity

CRs reach us passing from equator They encounter slow wind Long time lag : ~ 9-13 months

Heliosphere is a magnetic spectrometer. It selects/suppresses anti/particles from given directions

The evolution of the time-lag with the solar cycle is a remarkable signature of <u>charge-sign dependent drift</u> in the transport of CRs through the Heliosphere

Heliospheric B-Field

CRs experience drift motion through the large scale B-field of heliosphere, a magnetic dipole.

Monte-Carlo simulations of CR trajectories including drift motion

The evolution of the time-lag with the solar cycle is a remarkable signature of <u>charge-sign dependent drift</u> in the transport of CRs through the Heliosphere

The heliosphere is a giant magnetic spectrometer. It acts at selecting/suppressing trajectories.

- > During A+ polarity states, CR protons come to us through the polar regions. Fast wind, short lag.
- > During A- polarity states, CR protons come to us through the equators. Slow wind, large lag.

Thus, the observed evolution of the time-lag is a remarkable signature (and independent evidence) of charge-sign dependent drift in the modulation of cosmic rays in the Heliosphere

$$\tau_{lag} = \tau_M \pm \tau_A \times \cos\left[\frac{2\pi}{T_0}(t - \tau_P)\right]$$

Rigidity dependence?

Semi-empirical formula to describe lag evolution

$$\tau^{d}(t) = \tau^{d}_{M} + \tau^{d}_{A} \cdot \cos\left[\frac{2\pi}{T_{0}^{d}}\left(t - t^{d}_{P}\right)\right]$$

Determine the free parameters for the many time series (6 NM stations + space data)

Determine the mean GCR rigidity *R* for data set

- IMP+ACE → use data at 1 GV
- NM → data at ~25-30 GV (from their GMF cutoff)

Plot best-fit parameters as function of rigidity

Rigidity dependence?

Semi-empirical formula to describe lag evolution

$$\tau^{d}(t) = \tau^{d}_{M} + \tau^{d}_{A} \cdot \cos\left[\frac{2\pi}{T_{0}^{d}}\left(t - t^{d}_{P}\right)\right]$$

Determine the free parameters for the many time series (6 NM stations + space data)

Determine the mean GCR rigidity *R* for data set

All parameters except τ_M are independent on *R*. Tm decreases with rigidity

$$\tau = \tau_{\rm Min}^0 + \tau_M^0 \left(\frac{R}{\rm GV}\right)^{-\alpha} + \hat{q}\tau_A \cos\left[\frac{2\pi}{T_0} \left(t - t_P\right)\right]$$

26

Rigidity dependence?

The propagation time of GCR in heliosphere is rigidity dependent and charge-sign dependent

[See Strauss et al. ApJ 735, 83 (2011), O'Gallagher ApJ 197, 495 (1975)]

On the activity / magnetic solar cycles

Magnetic cycle: from **max** to **max**, T~22 yrs [A+/A- sequences] Activity cycle: from **min** to **min**, T~11 yrs [**number** sequences]

Evidence for a time Lag in cosmic-ray modulation

The modulation parameter $\phi(t)$ appears to be correlated with the sunspot no. SSN(t). The best correaltion is between $\phi(t)$ and $SSN(t - \Delta T)$

NT+ 2017, ApJ 849 L32: Evidence for 8-month lag using CR data from space (2000-2013) Theoretical interpretation, use of a «retarded» Parker's equation

Badwhar O'Neil 2014: Time lags of ~5-15 months observed in Neutron-Monitor data
Chowdhury et al 2016 Time lags of ~0-17 months between NM and SSN.

> Nimmyk 95, Badruddin 13 Different lags for different Solar Cycle numbers. Odd/Even effect?

- Different lags for different solar cycles
- Discrepancies between different study

==> Maybe the lag changes over the solar cycle?

SOLAR ACTIVITY

COSMIC-RAY MODULATION

MED/IMP-8 + ACE/CRIS

NM / ROME

