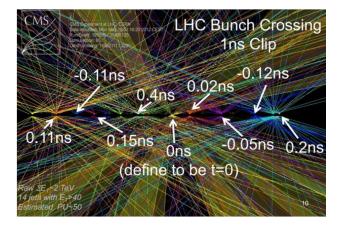
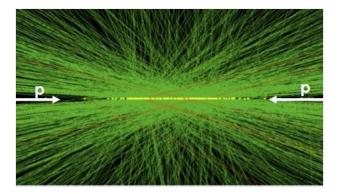


Università degli Studi di Padova

R&D on novel 4D trackers (3D+timing)

Workshop Laboratori Progetto di Eccellenza

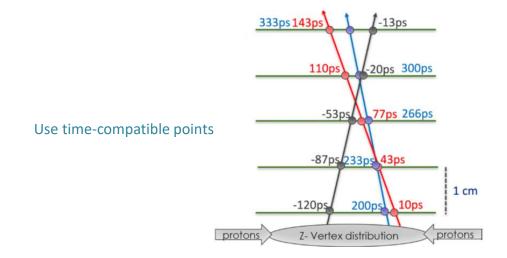

Serena Mattiazzo


on behalf of TimeSPOT, APIX and CMS BTL groups

Outline

- Scientific motivation for R&D activities on 4D trackers
- Activities at DFA and Padova INFN Section
- Present expertise and equipment
- Future perspectives (within "Progetto Dipartimenti di Eccellenza")

Timing



- Current situation: ~ 50 vertexes per bunch crossing
- Vertexes do not overlap in space → tracking resolves the vertexes

- HL-LHC situation: ~ 150 200 vertexes per bunch crossing
- Vertexes overlap in space → tracking does not resolves all vertexes
 - Spread of ~ 180 ps in time collisions → 30 ps to reject pile-up of a factor 6 (CMS)
 - with 35 ps time resolution, instances of vertex merging are reduced from 15% in space to 1% in space-time (like CMS LHC conditions)

Tracking in 4 dimensions

• The inclusion of time in the event information would greatly simplify tracking capability

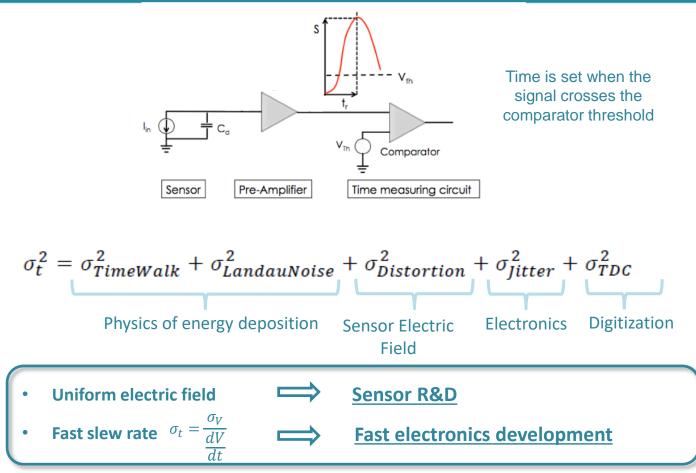
- Timing can be available at different levels of the event reconstruction:
 - Timing in the event reconstruction → Timing layers (time associated to each track)
 - 2. Timing at each point along the track \rightarrow 4D tracking (3D space tracking + 1D time)

R&D activities on 4D trackers

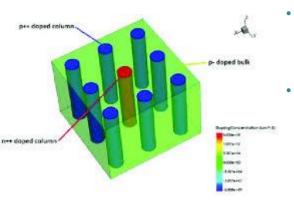
- Detector testing capabilities
- Fast electronics design and production

G. Simi, S. Mattiazzo, D. Pantano, G. Collazuol

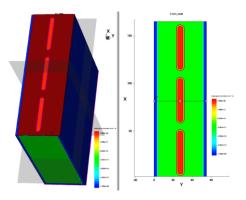
APIX/ASAP


G. Collazuol, L. Silvestrin, S. Mattiazzo

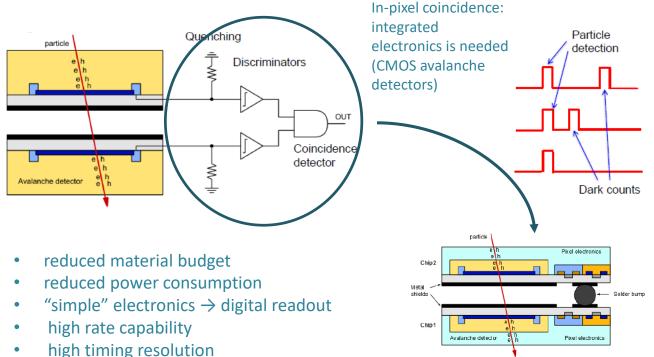
- Mechanics design and development
- Thermal measurements



R. Isocrate, N. Bez, D. Mazzaro, F. Veronese

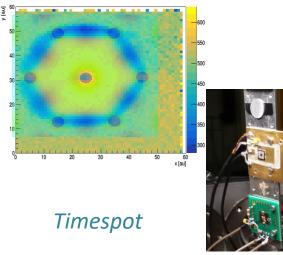

Silicon pixel detectors for timing: the challenge

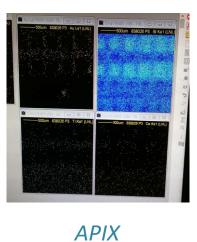
Timespot



- **Typical column 3D sensors** show very weak spots in electric field which correspond to much slower charge collection times whenever a track crosses the sensor
- Better results can be obtained with trench electrodes
 - trench structures increase pixel capacitance,
 - silicon trench geometries have never been produced so far.

APIX/ASAP

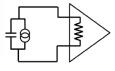

- It is a matrix of **Geiger-mode avalanche detectors**, suitable for particle tracking and imaging, formed by two vertically-aligned pixelated detectors,
- Two vertically-aligned cells are **readout in coincidence** to discriminate between particle-triggered detections and dark counts



Pixel mapping with proton microbeam

- Tests both on APIX and TIMESPOT sensor at the LNL AN2000 proton microbeam
 - 2 MeV protons in a spot of 3-4 μm of diameter.
 - Possibility to rasterize the microbeam over an area of 5×5 mm² on the focal plane.
 - Can be used both for functionality studies and radiation damage tests.
- <u>**Pixel mapping**</u> to evaluate uniformity of charge collection efficiency (CCE), timing uniformity (3 days of beam time assigned and still to be scheduled)
- <u>Sample preparation</u>: scintillating material (p-terphenyl) deposition on sensor surface possible thanks to the colleagues from the Material Physics group (G. Maggioni)

Average pulse height vs position



Presently available instrumentation (1)

Few broadband amplifiers (GALI55 from Minicircuits, 4 GHz current amplifier)

Current Amplifier

Large bandwidth oscilloscope (model MSO 64 Tektronix, 4 GHz BW)

Pulse generator HP 8110A (ns pulses, again too slow)

- IR laser 910 nm and 1064 nm (homemade) , ~ ns pulses (too slow for this application)
- Blue laser 409 nm, 40 ps pulses (not optimal wavelength for test on silicon)

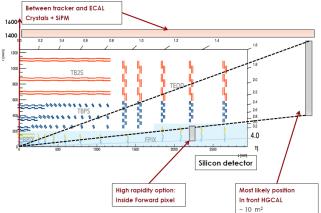
Presently available instrumentation (2)

Spectrum analyzer Semiconductor parameter analyzer (HP4156) Switching matrix (Keithley 707)

Semi-automatic probe station

X-ray irradiation facility (60kV, 50 mA)

Manual probe station

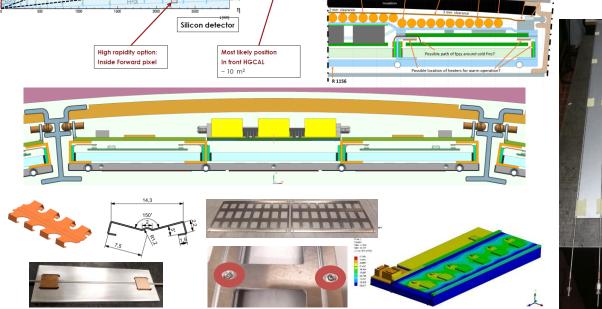


Wishing list

- Complete set of fast current amplifiers (different bandwidths, different gain, etc)
- **Sub ps IR laser** (nJ are sufficient for our purposes), with external trigger, fiber optic coupling and splitting (to shine two different detectors)
- **Optics** for focusing
- Time-To-Digital (TDC) converters with ps time resolution (ex SAMPIC)
- Micrometric x-y motor stages
- Fast pulse generator
- Even faster oscilloscope (20 GHz)

Full chip test in lab

CMS Barrel Timing Layer (BTL) activities in Padova


- Tray CAD design and modeling
- FEA thermal simulation

φ4m

Tray prototyping of various sizes and solutions

R 1182

• Assembly and installation study

BTL measurements in Padova Labs

• Room temperature setup with half tray mockup for ΔT measurement between cold plate and SiPMs

- Laboratory fridge acquired to perform temperature measurements up to -40°C on small (1 RU) mockup.
- Model LGT 2325, dimensions: **91 x 114 x 74** cm

Existing expertise

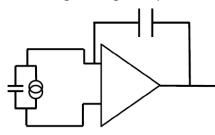
• Design and development of analog front-end for silicon pixel sensors

- Design of fast, low noise analog front-end electronics (with discrete components, no chip design), good for prototyping and testing of a limited number of channels
- Design, development and production of DAQ (hardware, firmware, software) for silicon sensors R&D (MAPS, SiPM, etc)

Silicon sensor testing capabilities

- Electrical characterization of silicon sensors
- Use of different radiation sources (lasers, calibration sources,) for functional characterization
- Testing facilities for radiation damage studies and dedicated dosimetry systems (X-ray tube, heavy ions, protons, etc)
- Facilities for interconnection between (very small) sensors and electronics and characterization test equipment (Al wire bonding, probe stations, probe cards, etc)
- Mechanical design
 - Team of designer and engineers, mechanical workshop

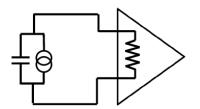
Expertise which we are acquiring


- Design and development of analog front-end for silicon pixel sensors
 - Capability to design and assembling electronics working at very high frequencies (≈ GHz)
 - Capability to work with Time-To-Digital converters (ps time resolution!)
- Silicon sensor testing capabilities
 - Capability to build setups using fast lasers

Thanks for attention

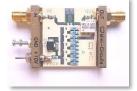
backup

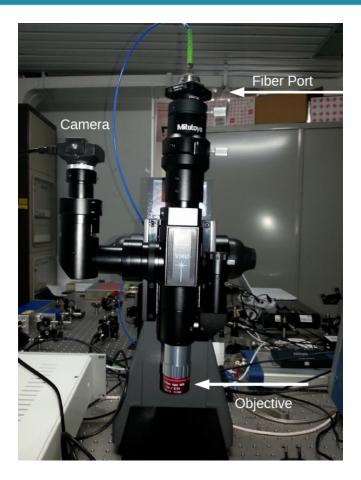
Fast frontend electronics

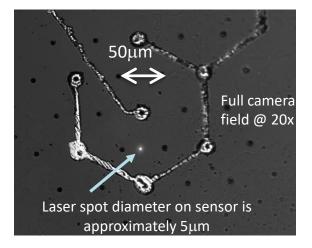

Integrating Amplifier

- Slower slew rate
- Lower noise
- Signal smoothing
- Less power

Current Amplifier




- Fast slew rate
- <u>Higher noise</u>
- Sensitive to Landau bumps
- More power


$$\sigma_t = \frac{\sigma_V}{\frac{dV}{dt}}$$

