

Unveil Neutrino Multimessenger Astronomy with Super-Kamiokande First general meeting of the Fellini programme

Mathieu Lamoureux mathieu.lamoureux@pd.infn.it

INFN Sezione di Padova February 24, 2020

This work was financially supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754496 - FELLINI

Overview

- **Title of project:** Unveil Neutrino Multimessenger Astronomy with Super-Kamiokande [UNMASK]
- Main topics: experimental neutrino physics and astrophysics, follow-up of external triggers, supernovae and study for future detectors
- Institute: INFN Padova
- Contract period: March 2019 March 2022

Super-Kamiokande

Neutrino astronomy

Past research studies

PhD thesis in 2015-2018 in CEA Paris-Saclay (France) on neutrino physics and the T2K experiment Supervisor: Marco Zito

Neutrino oscillation experiment in Japan

Main topic: search for hypothetical heavy neutrinos with T2K

- Would explain Baryon Asymmetry in the Universe (Baryogenesis via Leptogenesis)
- Produced alongside standard neutrinos in T2K beam
- Detected through their decay in the near detector

No discovery so far Results published in PRD in September 2019

Fellini project

Why neutrino astronomy?

Understanding of the mechanisms behind astrophysical sources

- Neutrinos propagate in straight line from the source and almost unabsorbed
- But they are difficult to detect (small cross sections)
 - \rightarrow need huge detectors

Neutrino telescopes

Main technology is water Cherenkov detectors (neutrinos detected with Cherenkov light emitted by charged particles from neutrino interaction) In the sea In ice In a tank

ANTARES (35 Mton)

KM3NeT (1 Gton)

 $E\gtrsim 0.1-1~{
m TeV}$

Hyper-Kamiokande

RunningIceCube(1 Gton)FutureIceCube-Gen2(10 Gton)Energy sensitivity $E \gtrsim 1$ TeV

Super-Kamiokande (50 kton)

Hyper-Kamiokande (258 kton)

 $E\gtrsim 4.5~{
m MeV}$

Neutrinos at Super-Kamiokande

Cherenkov light detected with the \sim 13000 PMTs of the detector. High-energy samples are dominated by **atmospheric neutrinos**.

Physics case

The Super-Kamiokande collaboration has done several follow-ups of astrophysical events detected by other experiments, looking for events in time and/or spatial coincidence, in the 4 samples.

2015	2016	2017	2018	2019	2020	
GW150914 GW15	4 51226	GW170817 TXS050	6	↓ ↑		
arXiv:1608.8745		8.8745 arXiv	arXiv:1802.04379		arXiv:1910.07680	

Need faster and more automatic analysis as the number of interesting astrophysical events to follow up is getting higher and higher.

Example of $GW + \nu$ analysis

- LIGO/Virgo alerts are public since 04.2019
- Binary mergers are astrophysical objects for which both GW and ν are expected
- **Detected GW** are not well localized in sky
- Neutrinos have a better pointing capability
- Increase the chance of observing EM counterparts (pointing telescopes)

Framework for realtime follow-up

Statistical analysis

If there is a neutrino event in time coincidence with the GW trigger, how likely is it to be from the same astrophysical source?

Goal: compute significance/p-value from spatial correlations of $GW+\nu$ \Rightarrow What is the probability that this observation comes from random background?

Method:

- define a test statistics TS with detector resolution, atmospheric ν distribution...
- compute TS distribution for pure background
- compare TS of real data to this background distribution, $p = \int_{TS_{data}}^{\infty} P_{bkg}(TS) dTS$

Different TS formulae under investigation: log-likelihood ratio (arXiv:1908.07706), combined χ^2 (arXiv:0801.1604), Bayesian (arXiv:1810.11467)...

Other studies

- Extend current SK framework for follow-up of public **IceCube** (TeV-scale neutrinos) and **GRB** alerts
- Supervision of a *Master project* on new selection of **supernovae neutrinos**, in the context of SNEWS2.0
- Simulation/reconstruction and prototype tests for the upgrade of the T2K Near Detector ND280
- Hyper-Kamiokande (HK) detector is the next generation water tank with enlarged volume (50 → 260 kton)
 - HK detector sensitivity (assuming SK-like reconstruction)
 - study of a potential novel energy reconstruction, taking benefit of better granularity of the detector

Various points

Diffusion, training and other activities

Collaboration-wide

- Regular video meetings within SK astro and atmospheric groups
- Super-Kamiokande / T2K / Hyper-Kamiokande collaboration meetings
- Detector shifts for Super-Kamiokande and T2K

Workshops and conferences

- Participation to workshops for training purposes on topic related to astrophysics (NuTel in 03.2019, KM3NeT Town Hall in 12.2019).
- Presentation of collaboration or analysis results to conferences on neutrino physics and astrophysics (TAUP in 09.2019, NEUTRINO in 06.2020 ?, another conference in 2021 ?).

Outreach activities

For the next European Researchers' Night in Padova:

- Exhibition of Super-Kamiokande photomultiplicators (20cmøavailable in LNL, possibility to get a 50cmøto be investigated).
- Possibility to have a VR show using a software already designed in the collaboration.
- Construction of a small model of Super-Kamiokande with LEDs representing the photo-detectors, allowing showing some real events.

VR show used for event at the Royal Society (London)

Interactive model (in London too)

Leads for the secondment

Different possibilities related to the Fellini project:

- Joint analysis SK-IceCube in search for neutrino sources:
 - Possibilities in Germany (e.g. DESY Zeuthen)
 - Possibility in Stockholm/Uppsala Universities
- Focus on Hyper-Kamiokande analysis
 - In discussion with researchers from Queen Mary (London)

Choice is not done yet as it strongly depends on:

- the evolution of the current project in the next month (officialisation of SK analysis, studies with HK...)
- the administrative conditions for the secondment

Summary

- Multimessenger neutrino astronomy with Super-Kamiokande
- Current work on realtime follow-up of Gravitational Wave events
- Main study so far: full implementation of framework + computation of statistical significance of GW+nu event
- Other studies:
 - use the same framework for GRB/IceCube events
 - supernovae neutrinos with Super-Kamiokande
 - simulation/reconstruction efforts for ND280 Upgrade
 - extension of current work to Hyper-Kamiokande (sensitivity)
- Outreach: European Researchers' Night with exhibition/VR/model
- Secondment: leads for extension of analysis to Hyper-Kamiokande or work on IceCube-SK combined analysis

Backups

More on the statistical analysis: method (I)

(1) For each point of the sky, using real data and GW skymap, compute¹

$$\mathcal{L}(n_S, \vec{x_s}) = \frac{e^{-(n_S + n_B)}(n_S + n_B)^N}{(N)!} \prod_{i=1}^N \frac{n_S \mathcal{S}_i + n_B \mathcal{B}_i}{n_S + n_B}$$
$$\Lambda(\vec{x_s}) = 2 \ln \left[\frac{\mathcal{L}(n_S = \widehat{n_S}, \vec{x_s})}{\mathcal{L}(n_S = 0, \vec{x_s})} \right] + 2 \ln \left[w_L(\vec{x_s}) \right]$$

with $w_L = \text{GW}$ probability and $\widehat{n_S}$ is the value maximising $\mathcal{L}(n_S, \vec{x_s})$.

- 2 The final Test Statistic is $\Lambda_{max} = \max_{sky} [\Lambda(\vec{x_s})]$
- **3** Repeat steps 1 and 2 with many background toy experiments to get the background distribution $P_{bkg}(\Lambda_{max})$.
- Compute p-value = $\int_{\Lambda_{\max}^{data}}^{\infty} P_{bkg}(\Lambda_{\max}) d\Lambda_{\max}$.

¹Hussain, R. et al. A Search for IceCube Neutrinos from the First 33 Detected Gravitational Wave Events. arXiv:1908.07706

More on the statistical analysis: method (II)

• Define likelihood²

$$\mathcal{L}(\vec{x_S}) = \frac{S_{GW}(\vec{x_s}) \prod_j S_{\nu}^j(\vec{x_s})}{B_{GW}(\vec{x_s}) \prod_j B_{\nu}^j(\vec{x_s})} \text{ and } \mathcal{L} = \int \mathcal{L}(\vec{x_s}) d\vec{x_s}$$

• Compute p-value = $\int_{\chi^2_{data}}^{\infty} P_{bkg}(\chi^2) \, d\chi^2$.

²Baret, B., et al. Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos. PhysRevD.85.103004

Other studies

Same framework can be used for other follow-ups with wide range of physics:

- Ultra-high energy neutrino alerts from IceCube (public)
- Gamma-Ray Burst alerts from Fermi/Swift

Project: adapt current implementation

Super-Kamiokande is very sensitive to supernovae neutrinos $[E \sim O(10) \text{ MeV}]$ (arXiv:1601.04778). Alerts are propagated through SNEWS.

Project: work with a Master student on a new selection (sensitive to farther events)

The T2K near-detector ND280 (main component of T2K with Super-Kamiokande) upgrade is currently under development.

Work: participate in simulation/reconstruction efforts as well as prototype tests at CERN/DESY.

SuperNova Early Warning System