Guiding the search for new fundamental physics with field theory techniques EFTforBSM

Dave Sutherland

Sezione di Trieste

Past experience

I have worked at:

- 2012–2016 PhD, High Energy Physics group University of Cambridge, UK
- 2016–2019 Postdoc, High Energy Theory group, University of California Santa Barbara, USA

on various aspects of particle phenomenology, typically using

- analytic/numerical calculations
- effective field theories

to try to understand how to look for new particles at experiments such as the LHC.

Look for the remnants of new particles in high energy collisions

New particles appear to be just out of reach

We have looked exhaustively for new light particles ($E_{\max}^{LHC} > M$). Now, look for **indirect effects** of **heavy particles** ($E_{\max}^{LHC} < M$).

- **Simple, polynomial signal shapes** $\left(\frac{E}{M}\right)^n$
- This finite set of universal effects forms the Standard Model Effective Field Theory (SMEFT)
- We are beginning to systematically study SMEFT effects at experiments

We want to make calculating these shapes easier We think in \mathcal{L} ; we measure \mathcal{A}

In summary: a timeline

The future is not in increasing energy, but in using **increasing precision** to look for **heavy new particles**.

We want to develop the associated theory to maximise the information we can extract about **heavy new particles**.

In summary: career prospects

For the secondment: a **scientific associateship** at **CERN**? Home to the LHC, the Higgs cross section working group, and large theoretical and experimental communities.