

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

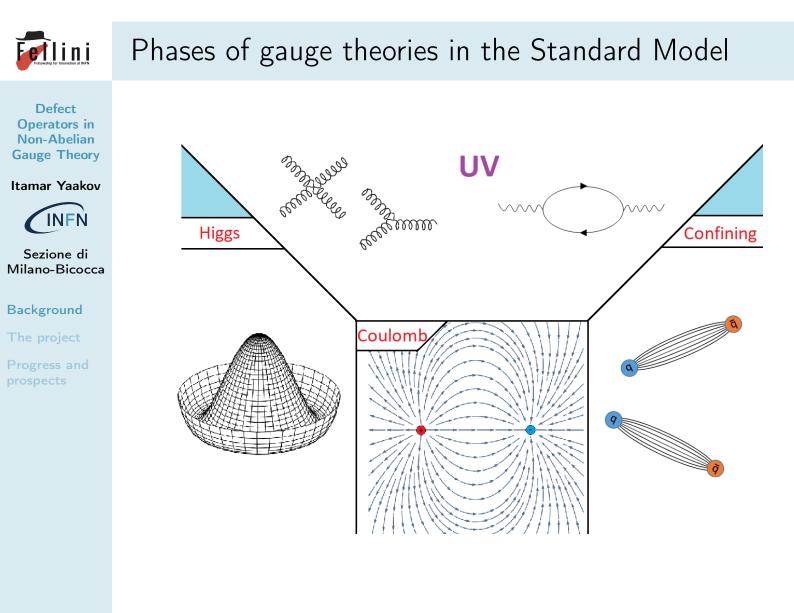
Sezione di Milano-Bicocca

Background

The project

Progress and prospects

Defect Operators in Non-Abelian Gauge Theory


First general meeting of the Fellini program Rome, Italy - February 24, 2020

Itamar Yaakov

Sezione di Milano-Bicocca

This work was financially supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754496 - FELLINI

Defect

Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di

Milano-Bicocca

Background

prospects

ÍNFŃ

Duality and collective behavior

Electric Magnetic duality

Classical electromagnetism is symmetric under the exchange

$$\vec{E} \to \vec{B}, \qquad \vec{B} \to -\vec{E},$$

electric and magnetic sources are exchanged.

for Yang-Mills, a similar "duality" was proposed by Montonen and Olive (1977), but it doesn't quite work.

The Mandelstam - 't Hooft conjecture

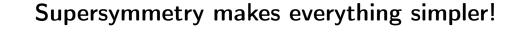
The Higgs and "confining" phases of Yang-Mills are dual to each other! The Coulomb phase is self-dual.

- the confining phase is a result of "monopole condensation", but no (non-singular) classical monopole solutions exist in Yang-Mills.
- quarks are confined due to the dual Meissner effect: dual to the situation in a superconductor.

Making progress

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov



Sezione di Milano-Bicocca

Background

The project

Progress and prospects

- EM duality is much better understood in supersymmetric theories.
- A version of monopole condensation was demonstrated by Seiberg and Witten (1994).

Importing ideas from models in other dimensions, or even from string theory, has been very useful.

Defect operators

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di Milano-Bicocca

Background

The project

Progress and prospects

Supersymmetric theories in 2 and 3 spacetime dimensions offer a compelling story

- 1. A variety of phases, Non-abelian Coulomb phases, confining phases, some of which can be attributed to condensation of composite particles ("quasi-particles") such as vortices.
- 2. Dualities at long distances between very different looking gauge theories, with the exchange of quasi-particles (e.g. vortices) with ordinary quanta.
- 3. Symmetry, even supersymmetry, enhancement at long distances.
- 4. Exchange ordinary local operators with local **defect operators**: a prescription for creating a quasi-particle.

All have been observed to occur in 4 spacetime dimensions, except #4. Why?

The proposal

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di Milano-Bicocca

Background

The project

Progress and prospects

I proposed to "study local defect operators in non-abelian gauge theory in four dimensions, with and without supersymmetry"

- Motivated by lower dimensional examples as well as the general picture of electric-magnetic duality.
- Accessible through supersymmetric models, with a great deal of relevant recent progress.
- The simplest constructions have been ruled out (Kapustin (2005)), but there is still room for some creativity.
- A plethora of possible applications to both physics and mathematics (via TQFT).

The power of supersymmetric localization

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di Milano-Bicocca

Background

The project

Progress and prospects

Supersymmetric localization: an exact version of the saddle point approximation

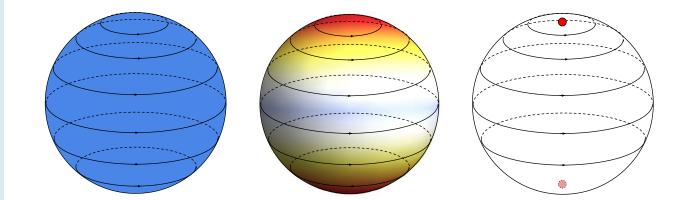


Figure: All three yield the same result for the Euler number.

Exact results for gauge theories, even at strong coupling!
Supersymmetric defect operators are compatible.

Progress so far

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di Milano-Bicocca

Background

The project

Progress and prospects

Before submitting the proposal

preliminary identification for a defect configuration (the "meron"): i.e. the thing which has possibly been missed in previous investigations.

In collaboration with Alberto Zaffaroni at Milano-Bicocca

- set up an analogy between the situation in 4 and 3 dimensions (including a fun connection to black hole microstate counting).
- proved a mathematical relationship between the topological index (ground state counting) and the superconformal index (operator counting) so I can interpret the meron as an operator (unpublished).

In progress: proving that meron states are **required** by 3d mirror symmetry (3d EM duality). A convincing result if you are a string theorist.

Secondment and future prospects

Defect Operators in Non-Abelian Gauge Theory

Itamar Yaakov

Sezione di Milano-Bicocca

Background

The project

Progress and prospects

Future research targets

- Compare the moduli space of meron-like solutions to the spectrum of 't Hooft lines.
- Quantize merons and deduce the quantum numbers of the meron operator.
- Search for connections between merons and global symmetry (or supersymmetry) enhancement.
- Investigate possible applications to confinement.Secondment, mentoring, and outreach
 - Secondment details will depend on progress and collaborations in the next year or so.
 - I am mentoring a student on an ITN fellowship at University of Parma: collaboration on Lattice and 2d YM.
 - I have not had the chance to do any outreach.