Experimental studies towards the development of an ultra-compact electromagnetic calorimeter composed of oriented crystals

Pietro Monti-Guarnieri

on behalf of the STORM / OREO collaboration,

With the support of EIC Pathfinder Open TECHNO-CLS G.A. 101046458

University of Ferrara & INFN Ferrara

Channeling 2023, 05th June 2023

Overview

- 1. The **Strong Field** regime: from the physics to the applications to **calorimetry**
- 2. The STORM project:
 - Goals
 - Experimental methods
 - Main results
- 3. Conclusions & outlooks

The physics of oriented crystals

Electrons (positrons) incident on randomly oriented matter

Bethe-Heitler bremsstrahlung due to the interactions with the single nuclei Electrons (positrons) incident with a small enough angle (θ) with respect to the **plane** (left) or **axis** (right) of an oriented lattice

If θ is small enough, the electrons fall in a **bound state**: channeling motion + emission of **channeling radiation**

The Strong Field (SF) regime

Ultra-relativistic e^{\pm} experience a **constant and** enhanced electrical field (ϵ) and emit hard photons with a high intensity (quantum synchrotron emission), if: channeling

$$\chi = \frac{\gamma \varepsilon}{\varepsilon_0} > 1$$
$$\theta < \Theta_0 = \frac{U_0}{mc^2}$$

Axial where $\varepsilon_0 \sim 1.32 \cdot 10^{18} \text{ V/m}$ is the Schwinger critical field channeling and U_0 the potential well depth of the crystal axis.

> The effect is already visible at
$$\chi \sim 0.1$$
 ($\theta \sim 1^{\circ}$, kinetic energy $E \sim 10$ GeV)

> The angular acceptance is energy-independent Strong field (and $\Theta_0 \gg \theta_{\text{channeling}}$) (CFA)

For the PbWO₄ (100) axis, the full SF regime ($\chi = 1$) is attained at E ~ 32 GeV, θ ~ 0.9 mrad

05/06/2023

(----)-----(----)-----

•••••

Planar

The Strong Field (SF) regime

See <u>L. Bandiera's talk</u> on Wednesday!

The

•

- 🗆

• 🗖

strong

Applications to e.m. calorimetry

Proposal: one oriented layer (~ $5 X_0$) + one or more non oriented layers (~1 $5 X_0$), each one coupled to photodetectors.

- Better containment of the e.m. showers up to several TeV
- Reduced sensitivity to neutral hadrons
- > **Particle ID** (e.g., $n \gamma$ discrimination)

Problem: the experimental data available today with <u>oriented</u> <u>scintillating crystals</u> are **insufficient** for any practical purpose...

05/06/2023

The STORM project (INFN CSN/5): STrOng cRystalline electroMagnetic field

Main goal:

"Investigation of the beam interactions with strong crystalline electromagnetic field [...] for applications in accelerator and detector physics"

One of the main outcomes has been the **first-time** characterization of the SF regime by **direct light detection** in **oriented PbWO₄ crystals**, with:

- > Multiple crystal lengths $(0.45 4.6 X_0)$
- \succ e[±] and photon beams
- > A wide energy range (20 120 GeV)

The STORM experimental setup

Setup used to characterize the Strong Field effects in crystal samples coupled to Silicon PhotoMultipliers (SiPMs) exposed to **high energy** e^{\pm} (top) or **photon** (bottom) beams, with a small divergence (~ 100 µrad)

The crystal-beam alignment

- 1. Laser-guided pre-alignment
- 2. Stereogram reconstruction, carried out by performing several angular scans, in search for the position of maximum particle multiplicity and maximum energy deposit.

05/06/2023

Pietro Monti-Guarnieri | Channeling 2023

Strong Field effects in PbWO₄ crystals

Radiation spectra measured by γ CAL, for a 120 GeV/c electron beam impinging on a **PbWO**₄ crystal:

□ In "axial" alignment (0 mrad)

□ In "random" orientation (50 mrad)

Good agreement with the numerical simulations!

[figures from M. Soldani PhD thesis, 2023]

Strong Field effects in PbW0₄ crystals

Energy deposited in a $1 X_0$ PbWO₄ crystal by a 120 GeV/c electron beam (left) and a tagged photon beam (right).

[Figures from A. Selmi MS Thesis, 2022 and P. Monti-Guarnieri MS Thesis, 2023]

Strong Field effects in PbWO₄ crystals

Energy deposited in a $2 X_0$ PbWO₄ crystal (left) and a $4.6 X_0$ crystal (right) by a 120 GeV/c electron beam

[Figures from A. Selmi MS Thesis, 2022 and P. Monti-Guarnieri MS Thesis, 2023]

Energy absorption curves for PbWO₄

Reduction of the PbWO₄ radiation length

Given an energy enhancement factor, the **equivalent length** of the crystal in the axial alignment (L_{eq}) can be estimated, if the energy loss curve in the non-oriented material is known (e.g., with Geant4).

This allows to estimate the "relative reduction of the radiation length":

$$\Delta X_0^{\text{eff}} = \left(1 - \frac{L_{\text{true}}}{L_{\text{eq}}}\right)\%$$

where $\ensuremath{L_{true}}$ is the physical length of the sample.

Reduction of the PbWO₄ radiation length

Relative reductions of the radiation length of 20 - 40% have been observed (w.r.t. the «ordinary» value: X₀ ~ 8.9 mm).

[figure from <u>P. Monti-Guarnieri MS Thesis</u>, 2023] [tabulated values from M. Soldani PhD Thesis, 2023]

Thickness [X ₀]	Effective thickness [X ₀]	Thickness increase [%]	Effective radiation length [mm]	Radiation length reduction [%]
0.45	0.745	65.48	5.38	39.6
1	1.520	51.98	5.86	34.2
2	2.923	46.17	6.09	31.6
4.6	6.208	34.96	6.60	25.9

05/06/2023

Angular acceptance of the Strong Field regime

The Strong Field is fully attained only with $\theta \leq \Theta_0 \sim 0.9 \text{ mrad}$, but there is a **non negligible enhancement** up to $\mathbf{8} \cdot \Theta_0$

[figures from M. Soldani PhD Thesis, 2023]

05/06/2023

Pietro Monti-Guarnieri | Channeling 2023

Conclusions & outlooks

Achievements of the **STORM** project:

- ✓ Observation of the acceleration of the e.m. shower in oriented PbWO₄ crystals $(0.45 4.6 X_0)$, with e^{\pm} and γ beams in the 20 120 GeV energy range
- \checkmark Measurement of a 20 40% reduction of the effective radiation length of the material
- ✓ Characterization of the SF regime for the first time by means of direct light detection
- ✓ Development of novel **tools** for the Geant4 simulation of the interactions in oriented crystals

What remains to be done:

Realize the first calorimeter composed of oriented crystals (OREO project, INFN CSN/5).

Thank you for your attention!

For questions or comments please contact: pietro.monti-guarnieri@cern.ch

e^{\pm} radiative phenomena in an oriented crystal

Why lead tungstate (PbWO₄)?

Wide-spread used crystal in particle physics applications (e.g., CMS eCAL), due to:

- □ Easiness of large-scale production
- □ Optimal timing properties (PWO-UF)
- □ Good radiation hardness
- □ Short radiation length
- □ High light yield

[picture and tables from P. Monti-Guarnieri MS Thesis, 2023]

	Physical parameters [35]				
	Parameter	PbF ₂	PbWO ₄		
J ₄):	Density (p)	7.78 g/cm ³	8.30 g/cm ³		
	Relative mass fractions	Pb: 84.6 %	Pb: 45.6 %		
		F: 15.5 %	W: 40.4 %		
			O: 14.0 %		
ohysics	Minimum ionization (ε_{MIP})	9.34 MeV/cm	10.20 MeV/cm		
	Radiation length (X ₀)	0.94 cm	0.89 cm		
	Nuclear interaction length (λ_{int})	22.10 cm	20.27 cm		
	Critical energy for electrons (E_c)	9.35 MeV	9.64 MeV		
	Molière radius (R_M)	2.12 cm	1.96 cm		
	Crystallographic parameters				
	Parameter	PbF ₂	PbWO ₄		
	Lattice structure	Body Centered Cubic [108]	Tetragonal [50]		
	Reference axis	$\langle 110 \rangle$	$\langle 100 \rangle$		
VV	Interatomic pitch (d)	4.19 Å[109]	5.45 Å[110]		
	Effective screening length (a_{eff})	0.205 Å	0.218 Å		
89	Axial potential well depth (U_0)	332 eV	464 eV [74]		
	θ_c for 10 GeV/c electrons	0.257 mrad	0.305 mrad		
[1b0]	θ_c for 100 GeV/c electrons	0.081 mrad	0.096 mrad		
	Θ_0	0.650 mrad	0.908 mrad		
	χ for 10 GeV/c electrons	0.240	0.314		
	χ for 100 GeV/c electrons	2.400	3.140		
	Electron energy such that $\chi = 0.1$	4.166 GeV	3.184 GeV		
	Electron energy such that $\chi = 1.0$	41.659 GeV	31.844 GeV		

Pietro Monti-Guarnieri | Channeling 2023

What about positrons?

THE UNIVERSITY OF THE STATE OF

Angular acceptance of the Strong Field regime

05/06/2023

Strong Field effects in a Cherenkov radiator (PbF₂)

[figure from P. Monti-Guarnieri MS Thesis, 2023]

