X-rays from laser produced plasmas

<u>Danilo Giulietti ^(1, 2) & Alessandro Curcio ⁽²⁾</u>

⁽¹⁾Physics Department of the University and INFN, Pisa, Italy ⁽²⁾Laboratori Nazionali di Frascati, INFN, Frascati, Roma, Italy

SUMMARY

Since the early 60s, with the advent of LASERs, it was understood how they could be used to create pulsed X-ray sources of extraordinary brightness, by **directly** focusing the radiation on a solid target. The peculiar characteristics of these sources have progressively been implemented hand in hand with the evolution of laser technologies. In fact, as the duration of the laser pulses became shorter and consequently higher intensities were reached, denser and hotter plasmas were produced, with a consequent increase in the source brightness and energy of the emitted photons. With the **further advent of the amplification techniques of** ultrashort laser pulses (fs) and the overwhelming development of the acceleration of high energy electrons (GeV) in laser produced plasmas, new possibilities of generating X-rays have become possible. Among these the most important are (a) **the bremsstrahlung radiation**, produced by directing the high energy electrons on high atomic number targets (b) the **betatron radiation** produced by the accelerated electrons in the plasma, during their transverse oscillation motion as they propagate at relativistic speeds in the low-density channel induced by the laser pulse via the ponderomotive forces.

Laser-Matter Interaction

Black-body versus plasma emission

Focusing on solid target

LASER: 100J in 1ns, focal spot $\phi \approx 100 \mu m$ B_x $\approx 10^{13}$ W cm⁻² strad⁻¹

LASER: 10J in 20fs, focal spot $\phi \approx 100 \mu m$ B_x $\approx 10^{17}$ W cm⁻² strad⁻¹

LASER-PLASMA ACCELERATION

LASER PLASMA ACCELERATION (1)

LASER PLASMA ACCELERATION (2)

$$for \gamma_{p} \approx \frac{\omega}{\omega_{pe}} >> 1 \Rightarrow \Delta W_{max} = 4\gamma_{p}^{2} \frac{\delta n_{e}}{n_{e}} mc^{2}$$

$$energy \ gain \ along \ L_{deph} \approx \gamma_{p}^{2} \lambda_{p} \ , \qquad \lambda_{p} \approx \frac{2\pi c}{\omega_{pe}}$$

$$\Delta W_{max} \approx eE_{max} \cdot L_{deph} \propto n_{e}^{\frac{1}{2}} \cdot \frac{1}{n_{e}} \cdot n_{e}^{-\frac{1}{2}} = \frac{1}{n_{e}}$$

PLASMONX Electron LASER-Plasma Acceleration@LNF

SPECTRUM OF ACCELERATED ELECTRONS

10mm He gas-jet n_e = 1-4x10¹⁹ cm⁻³ λ_L =0.815 µm I_0 =2x10¹⁹Wcm⁻²

Fig. 6. Upper image: Electron spectrum obtained at 8 bars, showing a cut-off energy above 450 MeV (see text). Lower image: Electron spectrum obtained showing the lowest energy spread (4.6 %), obtained again at 8 bars. danilo.giulietti@unipi.it

SECONDARY SOURCES

- Energetic electrons on high Z solid target
- Betatron radiation
- Thomson Scattering
- FEL

Energetic electrons on high Z solid target

FIG. 3. Spectrum of the γ radiation produced by the electron bunches crossing the 2 mm tantalum slab, as calculated from the postprocessing activity measurements.

A. Giulietti, D. Giulietti et al, Intense γ-Ray Source in the Giant-Dipole-Resonance Range Driven by 10-TW Laser Pulses, Phys. Rev. Lett. 101, 105002, 2008 danilo.giulietti@unipi.it

BETATRON RADIATION

LASER PLASMA ACCELERATION

Principles of the Betatron radiation

A. Rousse et al., Phys. Rev. Lett 93, 135005(2004)

Betatron radiation

Electron plasma density $10^{18}/cm^3$, laser pulse 20 - 40 fs

Laser pulse energy $E_l = 6J$, Electron bunch charge $Q_B = 100pC$ Diameter of the laser focal spot ~ $10\mu m$ Electron initial configuration space : back of the bubble Acceleration length ~ Dephasing length ~ 11 mm Pump depletion length ~ 11 mm

Betatron spectrum

Critical energy $E_c \sim 120 \ keV$ Spatial distribution of the radiation collected

Thomson Scattering

Fig. 1. Thomson backscattering geometry. The electron beam of longitudinal and transverse size σ_L and σ_R , respectively, is moving at a relativistic speed from left to right, colliding with a photon beam of waist size w_0 and duration T, thus emitting scattered radiation mainly in the direction of motion of the electron beam.

Start-to-end simulation of a Thomson source for mammography, P. Oliva,D. Giulietti et al, NIM A, 615, 93-99, 2010

THOMSON BACK-SCATTERING

$$v_{T} = v_{0} \frac{1 - \beta \cos \alpha_{L}}{1 - \beta \cos \theta} \approx v_{0} \frac{4\gamma^{2}}{1 + \theta^{2}\gamma^{2}} \approx 4\gamma^{2}v_{0}$$

for $\alpha_{L} = \pi$ and $\theta <<1$ or $\theta = 0$

e⁻ (30MeV);
$$\lambda_0 = 1 \mu m$$
, $E_0 = 1.24 \text{ eV} \longrightarrow \lambda_T = 0.069 \text{ x} 10^{-8} \text{nm}$, $E_T = 18 \text{ KeV}$

e⁻ (200 MeV); $\lambda_0=1\mu$ m, E₀=1.24 eV $\lambda_T=1.56 \times 10^{-3}$ nm, E_T=800 KeV

Spectral-angular distribution

Fig. 8. Spectral-angular (integrated in the azimuthal angle ϕ) distribution of the collected radiation for the optimized parameters $w_0=15 \,\mu\text{m}$ and duration T=6ps, $\vartheta_M=8 \,\text{mrad}$.

FREE ELECTRON LASER

UNDULATOR

ENEA UNDULATOR

CONCLUSIONS

We certainly cannot ignore the most important sources of X-ray radiation available at LINACs or synchrotrons, nor the quality of that radiation in terms of tunability, energy spread and divergence. However, the sources of X-ray radiation from laser produced plasmas undoubtedly remain favorable by their relatively small dimensions and maintenance costs.