### The ANDROMeDa Project

Searching for Dark Matter with Vertically-Aligned Carbon Nanotubes

Francesco Pandolfi, Ilaria Rago **INFN Rome** 

Gianluca Cavoto, Carlo Mariani, Francesca Maria Pofi, Ravi Prakash Yadav Sapienza University & INFN Rome

Alice Apponi, Alessandro Ruocco Roma Tre University & INFN Rome 3



Aligned Nanotube Detector for Research On MeV Darkmatter







Istituto Nazionale di Fisica Nucleare

### Poor Sensitivity for Dark Matter in Sub-GeV Range

Current experiments mainly based on nuclear recoil 



- If Dark Matter (DM) mass < GeV
  - no visible nuclear recoil



lighter target needed

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023





### Less Strict Limits Using Electron Recoil

Few experiments sensitive to electron recoil



Francesca M. Pofi





### Electrons Directly Into Vacuum: 2D Materials

Assuming 
$$\begin{cases} v_{DM} = 300 \frac{km}{s} \rightarrow K_{DM} \\ For \begin{pmatrix} m_{DM} = 10 - 100 \text{ MeV} \end{pmatrix} \end{cases}$$

Able to **extract electrons** from carbon ( $\Phi_C = 4.7 \text{ eV}$ )

Low energy electrons = extremely **short range** in matter 

Problem solved using **2D materials**:

- electrons directly ejected into vacuum
- no additional energy loss

Francesca M. Pofi









### Growing Carbon Nanotubes Forests



State-of-the-art nanotube facility in Rome Sapienza 

- Chemical Vapour Deposition (CVD) technique
- Up to 8 cm<sup>2</sup> extension on various substrates
- Diameter ~20 nm, length up to 400 µm



**Result:** vertically-aligned nanotubes forests

Ideal target for DM search?

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023



-20 nm







## Directional Sensitivity with Carbon Nanotubes

### Raman analysis after Ar+ bombardment

- Lateral penetration  $< 15 \, \mu m$
- Longitudinal damage along full length (180 μm)
- Highly anisotropic density



- vanishing density in tube axis direction
  - electron ejected only if parallel to tubes

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023



G. D'Acunto, et al., Carbon 139 (2018) 768





## A New Detector Concept: The Dark-PMT

### **Working principle:**

- DM-electron scattering on a target of VA-CNTs
- Electrons out if tubes parallel to the DM wind
- Acceleration up to keV
- Detection by silicon sensor

### Key features:

Directional Sensitivity



Cygnus

- ✓ Sensitive to few eV electrons
- $\checkmark$  ~Unaffected by thermal noise ( $\Phi_C = 4.7 \text{ eV}$ ) even at room temperature

Francesca M. Pofi











### Dark Matter Search with 2 Dark-PMT Arrays

Looking at expected rate of electrons ejected from VA-CNTs 

- rate for  $\theta_w = 0^\circ >>$  rate for  $\theta_w = 180^\circ$
- <u>counts excess</u> if dark-PMT pointed in DM wind direction

two arrays of dark-PMTs on a moving platform 

- 1st pointed towards Cygnus -> DM signal
- 2nd in opposite direction backgrounds
- $\geq$ 1 g mass for array so ~100 units with 10 cm<sup>2</sup> cathode area

Francesca M. Pofi





### Background Minimisation Will Be Essential

R. Catena et al., arXiv:2303.15509 [hep-ph] Expected exclusion limits  $10^{-27}$  $10^{-28}$ • For just 1 g x 1 year exposure  $10^{-29}$  Using 2 arrays of 100 Dark-PMTs  $10^{-30}$ protoSENSEI@Surface  $10^{-31}$  $10^{-32}$ Performance strongly depends on BG event rate  $\overline{\sigma}_e \ [\mathrm{cm}^2]$  $10^{-33}$ DAMIC-SNOLAL  $10^{-34}$ • BG rate < 0.05 events/year x dark-PMT needed protoSENSEI@MINOS  $10^{-35}$ to extend current limits 5 BG ev/yr · PM1  $10^{-36}$  $10^{-37}$ 0.05 BG ev/yr • PMT  $10^{-38}$  $10^{-39}$ DM-e scattering Models  $H_{\rm DM} = J$  $10^{-40}$ 10  $10^{2}$  $10^{3}$ DM Mass (MeV)

Francesca M. Pofi









## The ANDROMeDa Project

- INFN (F. Pandolfi P.I.) Sapienza (G. Cavoto) Roma 3 (A. Ruocco)





Aligned Nanotube Detector for Research On MeV Darkmatter

The ANDROMeDa Project, Channeling 2023

Francesca M. Pofi





# Detecting keV Electrons with Silicon Detectors

SDDs of APDs born as photon detectors 

nick dead layer (Si oxidation) -> able to detect electrons • with

Benchmark: Windowless Avalanche Photodiodes 





- simple, cost-effective
- produced by Hamamatsu

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023



Electron's

trails

SDD

11



Backup: Silicon Drift Detectors 



Energy lost in

the dead layer

**Backscattering** 

5.9 mm

- ultimate energy resolution
- produced by FBK + electronics by PoliMi

## APD Characterisation @ LASEC Labs (Roma Tre)

Hot tungsten filament + electrostatic lenses

### **Key features**:

- Electron energy: 30 < E < 1000 eV
- Energy uncertainty < 0.05 eV</li>
- Beam spot ~ 0.5 mm
- Current as low as a few fA

✓ can probe single electron regime

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023











from literature: •



Francesca M. Pofi

# APD Currents



A. Apponi et al 2020 JINST 15 P11015

The ANDROMeDa Project, Channeling 2023

### Electron Gun @ Milano Bicocca

UV led + metallic electrodes + electric field

### **Key features:**

- Electron energy: 0 < E < 30 keV
- Energy uncertainty < 2 eV
- Beam spot < 1 mm
- Current as low as a few fA
- Compact & easy to move



First measurements on APDs in Jan 2023 -



Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023









# First Dark-PMT Prototype: Hyperion II

Prototype-0 already taking data in Rome Sapienza

Observed field electron emission from CNTs



- Measurements with SDD
- For high  $\Delta V$  / small d(CNT-SDD)
- ~2 keV electrons emitted by CNTs detected

Francesca M. Pofi







### Conclusions



Francesca M. Pofi







### Backup Slides

Francesca Pofi





## CVD: How Does It Works?

### Main Steps: $\bowtie$

- 1. metallic nanolayer (e.g. iron) deposited on the substrate
- 2. annealing at high temperature
  - nanolayer forms nanoparticles = catalyst seeds during synthesis
- Carbon precursor gas (e.g. acetylene) oriented on nanoparticles at high temperature 3.
  - nanotubes formation



Francesca M. Pofi







# From 10 cm<sup>2</sup> Cathode to 1 cm<sup>2</sup> Sensor

- To reach 1 g target with 100 dark-PMTs  $\rightarrow$  10 cm<sup>2</sup> cathodes ●
- Large Area Silicon Detectors  $\rightarrow$  1 cm<sup>2</sup> sensors ●
- 10:1 electron focusing system needed
- Key parameter: **focusing efficiency**

• computed as  $\frac{\# e^{-} detected}{\# e^{-} from cathode}$ 

- aim for efficiency > 90%
- can be optimised using UV light + standard photocathode

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023







Electron trajectories simulations with SIMION software



## Going Into Detail on Raman Spectroscopy

 $\geqslant$ on pristine sample:



Francesca M. Pofi









### Electron Detection: Main Challenges

Electron energy =  $\Delta V$ (anode-cathode) to keep < 10kV 

### **Key parameters :** Ø

- 1. **compactness** to have a portable dark-PMT detector;
- 2. high (>90%) efficiency on single  $e^-$  detection in keV energy range;
- 3. percent-level **discrimination** between  $1e^{-1}$  and  $2e^{-1}$  events
- 4. suppression at permil level of fake single  $e^-$  signals due to noise

Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023







**e**-

### Unwanted Features of Carbo

- Two problems with as-grown nanotubes fore
  - 1. non-aligned top crust layer
    - due to initial growth instabilities
  - 2. side **waviness** at the nanoscale
    - due to different growth rates
- Both hamper electron transmission
  - minimisation needed for ideal DM target

Francesca M. Pofi









## Plasma Etching to Remove Crust

- **Optimisation** of  $Ar_2/O_2$ -plasma etching parameters (e.g. time, plasma power, frequency, pressure)
  - measuring morphology (SEM), roughness (AFM) and electron emission



Francesca M. Pofi





The ANDROMeDa Project, Channeling 2023

### Aiming for Ultimate Parallelism at the Nanoscale

Parallelism strongly influenced by iron catalyst seeds

- 1. non-uniformity in seeds size
  - leads to different growth rates •
- 2. **density** of seeds
  - farer seeds = weaker interaction between tubes

Evaporation chamber being built in Rome

- aim for seed density  $> 10^{12}$  cm<sup>-2</sup>
- **AFM** to check seeds size, density and distribution
- **iterative optimisation** of nucleation parameters

Francesca M. Pofi





|                                      | Now                                | Goal               |
|--------------------------------------|------------------------------------|--------------------|
| seeds density<br>[cm <sup>-2</sup> ] | 10 <sup>10</sup> -10 <sup>11</sup> | > 10 <sup>12</sup> |
| seeds size<br>[nm]                   | 15-30                              | 5 (±20%)           |



## Avoiding Neutrino Background with Directionality

 $10^{-36}$ **Directionality**: link a signal with region of the sky  $[cm^2]$ 10-38. DM 'wind' expected to come from Cygnus constellation ullet**CRESST (2019)** section  $10^{-40}$  -CDMSLite (2018) But also to be **insensitive to neutrino floor** DarkSide-50 (2018)  $10^{-42}$ Cross Low mass neutrino floor mostly from solar neutrinos • XENON1T (2019)  $10^{-44}$  Cygnus never overlaps with Sun **Directionality** solar 6th Sep. 26th Feb. neutrinos 3.3333 - 5 keV Nutrino coherent scattering 3.3333 - 5 keV  $10^{-50}$  . 10<sup>0</sup> DM Mass (GeV)





### World-Leading Sensitivity Below 30 MeV?

### **Competitive** with other light DM searches

- with just 1 year exposure
- using 1 kg target

G. Cavoto, et al., PLB 776 (2018) 338



Francesca M. Pofi

The ANDROMeDa Project, Channeling 2023



In principle sensitive to few MeV DM 

- extend search below 30 MeV
- using just 1 g target

