${ }^{1}$ LPI RAS, Moscow, Russian Federation; ${ }^{2}$ INFN-LNF, Frascati, Italy; ${ }^{3}$ NRNU MEPhI, Moscow, Russian Federation

A fermion in a nonuniform EM wave field

We consider the interaction of a fermion with an arbitrary inhomogeneous field of an EM wave completely described by the vector potential written in common form (using the normalization, at which the scalar potential equals to zero):

$$
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{q}}\left(\mathbf{a}_{\mathbf{q}} e^{i\left(\mathbf{q r}-\omega_{\mathbf{q}} t\right)}+\mathbf{a}_{\mathbf{q}}^{*} e^{-i\left(\mathbf{q} \mathbf{r}-\omega_{\mathbf{q}} t\right)}\right)
$$

We represent the wave function of a particle as an expansion in terms of plane longitudinal waves (by longitudinal direction we mean the Longitudinal energy direction of the particle motion before interaction with the EM wave field):
$\Omega_{\|}\left(k_{z}\right)=c \sqrt{k_{z}^{2}+(m c / \hbar)^{2}}$

$$
\Psi(\mathbf{r}, t)=\frac{1}{\sqrt{L}} \sum_{k_{z}} \psi_{k_{z}}\left(\mathbf{r}_{\perp}, t\right) e^{i\left(k_{z} z-\Omega_{\|}\left(k_{z}\right) t\right)}
$$

We examine the fields, for which the quantities $a_{\mathbf{q}}, \mathbf{a}_{\mathbf{q}}^{*}$ are nonzero in some range of the wave vector $\mathbf{q}_{0}-\triangle \mathbf{q} \leq \mathbf{q} \leq \mathbf{q}_{0}+\triangle \mathbf{q}$. Additionally, we assume that the longitudinal momentum of a particle much exceeds the momentum maximum $k_{z} \gg\left|\mathbf{q}_{0} \pm \triangle \mathbf{q}\right|$. In other words the longitudinal energy of a charged particle is much greater than the energy of any photon in the EM wave field.

Dynamics of the polarization vector

initial phase

channeled oscillation period
Time dependence of the projections of the electron polarization vector with the longitudinal Lorentz factor equal 50 moving in the field of the OL formed by plane waves with intensity 10^{15} $\mathrm{W} / \mathrm{cm}^{2}$ and frequency $10^{15} \mathrm{~s}^{-1}$.

Effective Potential

The bispinor $\psi_{k_{z}}$ can be represented as a product of slowly evoluting in time bispinor $\overline{\psi_{k}}$ and rapidly oscillating in time operator matrix $\hat{S}(t)$, A bispinor slowly varying in time in the first order of the expansion in terms of the longitudinal energy satisfies the equation:

$$
i \hbar \frac{\partial \bar{\psi}_{k_{z}}}{\partial t}=\left(-\frac{(c \hbar)^{2}}{2 E_{\|}} \nabla_{\perp}^{2}+U_{e f f}\right) \bar{\psi}_{k_{z}}
$$

the dash-on-top means averaging over the period of fast oscillations
elastic part of the effective potential

$$
U_{e f f}=\frac{e^{2} \overline{\mathbf{A}^{2}}}{2 E_{\|}}+\frac{(c \hbar)^{2}}{2 E_{\|}} \overline{\left(\nabla_{\perp} \phi\right)^{2}}-\frac{\hbar^{2}}{2 E_{\|}} \overline{\left(\frac{\partial \phi}{\partial t}\right)^{2}}-\frac{e c \hbar}{E_{\|}} \overline{\left(\mathbf{A}_{\perp}, \nabla_{\perp} \phi\right)}
$$

The effective potential of the elastic interaction for the fermion completely coincides with that for a scalar particle (A.V. Dik, E.N. Frolov, S.B. Dabagov, J. Instrum. 13, (C0218), 2018). Spin effects appear only in the second order of expansion in longitudinal energy. For more details, see A.V. Dik, S.B. Dabagov, Phys. Lett. B. 839, (137786), 2023.

Spin dynamics in OL

We have considered the dynamics of the polarization vector ζ of a particle in the field of an OR formed by two plane p-polarized waves crossed at an angle $\pi / 2-\alpha$ in the semiclassical approximation. Based on the Bargmann-Michel-Telegdi equation and representing the polarization vector as a sum of smoothly varying $\bar{\zeta}$ and rapidly oscillating [vectors, the following equations were obtained:
channeling trajectory

$\frac{d \overline{\boldsymbol{\zeta}}}{d t}=[\overline{\boldsymbol{\Omega}}(t), \overline{\boldsymbol{\zeta}}]$

$\boldsymbol{\xi}(t)=-[\mathbf{a}(t), \overline{\boldsymbol{\zeta}}]$
$\omega=\omega_{0}\left(1-\beta_{z} \sin \alpha\right)$

Angular velocity of smooth precession
channeled oscillation amplitude

Time dependence of the dimensionless average spin precession angular velocity for two real trajectories of channeled particle

Dependence of the dimensionless amplitude of the average spin precession angular velocity on the longitudinal particle velocity for 3 different angles

Possible application

The maximum angular velocity of smooth precession can reach $10^{\wedge} 9 \mathrm{~s}^{-1}$. Despite such a large value of the maximum value of the averaged angular velocity, one could not expect a rotation of the polarization vector through large angles, due to the periodicity of the phase phi caused by periodic oscillations of the particle itself in the direct OL. However, the situation should be changed in the case of a curved optical lattice similar to that of a bent crystal. Below are estimates of the rotation angle of the polarization vector for some short-lived particles in a curved microwave laser field with intensity $10^{23} \mathrm{~W} / \mathrm{cm}^{2}$.
laser field intensity

particle	lifetime τ $10^{-12} \mathrm{~s}$	$\mathrm{mass}^{m c^{2}}$ MeV	rotation angle $\triangle \varphi$ rad, for $\gamma=10$
Λ_{c}^{+}	0.2	2286.46	0.11
Ξ_{c}^{+}	0.44	2467.8	0.208
Ξ_{c}^{0}	0.1	2470.88	0.047
Ω_{b}^{-}	1.1	6071	0.086
Λ_{b}^{0}	1.425	5619.4	0.13
Ξ_{b}^{0}	1.49	5788	0.128
Ξ_{b}^{-}	1.56	5791	0.134

elementary charge
rotation angle of the polarization vector

laser field frequency
particle lifetime particle mass
particle Lorentz factor expansion in longitudinal energy for ultrarelativistic particles, while for nonrelativistic ones in the third order of expansion in longitudinal energy. Analyzing the dynamics of an arbitrary spin for a charged particle in an OL field, we have shown that the dynamics of the polarization vector reveals a smooth precession, over which fast small oscillations are superimposed. The rate of smooth precession is proportional to the difference between the magnetic moment of the particle and its anomalous part. An estimate of the angular velocity of the spin vector precession is also found, which can reach rather large values $\sim 10^{9} \mathrm{~s}^{-1}$.

