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In our previous works
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it was shown that the motion of charged particles with optimal 
longitudinal velocity 

in a periodic (dz) interplanar potential well V(x,z) leads to the formation 
of coherent correlated states of these particles and to the generation of 
giant fluctuations of the transverse kinetic energy δТx ³ 30-50 keV. 
Such an effect is associated with the formation of an optimal coherent 
superposition of particle eigenfunctions and the condition for the 
implementation of the Schrödinger-Robertson uncertainty relation
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To implement this method, very special conditions are required:

• the target for nuclear fusion must be in the form of a perfect single 
crystal for realization of adaptive (at low energy) channeling

•this target must be composed of isotopes necessary for the 
implementation of the optimal nuclear reaction 

•such an ideal perfect single crystal target must be replaced after a 
short operating time due to its destruction in the process of nuclear 
reactions.

These problems may be solved by using two-stage mode of particle 
motion, which combines: 
•short-distance adaptive channeling of low-energy particles in a thin 
single crystal above-target film (e.g. graphene) with the optimal 
longitudinal velocity which leads to the formation of a correlated 
package in the transverse direction; 
•subsequent distant interaction of this package  with an 
unstructured target with optimal isotope composition. 
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The mode of motion of relatively slow particles (protons) in the space 
between atoms of N-layer graphene corresponds to periodical inhomogeneous 
harmonic oscillator, the potential energy of which can be approximated by the 

Upon transition to the comoving coordinate system, the motion of a particle in 
such a field corresponds to a non-stationary harmonic oscillator with a
variable frequency

Here ax and az are, respectively, the distance between atoms in the transverse 
and longitudinal directions, u  is the screening radius of the potential near each 
atom, wmsx is the local frequency of particle oscillations at points with the 
longitudinal coordinate                                                    .                                           
Numbers  N  corresponding to the maximum value of the model parabolic 
potential.
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For the case of single-layer graphene  N=1 and 

For single-layer graphene with a typical ratio of parameters dx /a=6 we have 
the following parameters of the wave superposition at the output of the channel

max max( ) exp{ | / 2 |}, ( ) exp{ | / 2 |}z z a t vt aw w w w= - = -
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Features of the formation of CCS and nuclear reactions in the interaction 
of slow protons with molecules and clusters in lithium vapor
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The dependence of the averaged <| r |> (a) and <G> (b) on the velocity of the particle v; 
d) the dependence on the coordinate of the correlation coefficient of a particle moving 
with the optimal velocity. All quantities correspond to diatomic molecules with the 
following parameters: a1) – e1) - dz / u = 4; a2) – e2) - dz / u = 5; a3) - e3 – dz / u= 6
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The considered process of effective quantization of a moving proton 
in a nonstationary potential well refers only to the transverse 
component of the momentum , which depends on the 
angle q of entry of the particle into the space between atoms and, 
accordingly, to the transverse energy associated with this component. 
It should also be recalled that it is these transverse components of 
momentum and kinetic energy that the process of CCS formation 
refers to. If the initial transverse component of the total kinetic energy 

eV is equal, for example, to eV 
(for this, the proton must fall at an angle of degrees to the 
axis of symmetry), then the effective fluctuations of this energy 
formed during the formation of the CCS corresponds to 

keV and more. 

This provides a high efficiency of the synthesis reaction even on a 
single-atom crystalline film of the graphene type.
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The passage of a particle along a crystal channel leads to the formation of a 
CCS of this particle. This state corresponds to a coherent superposition state 
with optimal phasing of the eigenfunctions. At the channel output (e.g. at  
z=0) this supposition corresponds to a transverse correlated wave 
packet which describes the state of the particle
[V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res., 35(1), (2014), 39-46
V.I.Vysotskii, M.V.Vysotskyy. Journal of Surface Investigation: X-ray, Synchrotron and Neutron 
Techniques, 2019, Vol. 13(6), 1116–1121] . 
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The wave field in space outside the channel can be calculated based on the 
standard procedure for any coherent superposition in quantum mechanics
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It is well known in quantum mechanics that the set of coefficients  c(p)  of the 
expansion of a general wave function in terms of partial plane 
waves in free space is the wave function of the same general wave 
function in the momentum representation
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The spatial localization density of a moving correlated packet in the space 
behind the crystal is described by the function
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Evolution of uncorrelated wave  packet              t

z0 = 0 < z1 < z2 < z3 < z4 < z5 < z6 < z7 < z8

Evolution of correlated wave  packet                  t

zcollapse



1

101

102

103

104
sp(x)/sp(0), 
dT(x)/ dT(0)

0.0001 0.001 0.01 0.1 1

10-1

10-2

sx(x)/sp(0)10-3

10-4

z/(v0mu2/ħ) 

G=200
G=50

G=20

G=10

G=5

sp,  
G=1

G=200 G=50
G=20

G=10

G=5
sx,  
G=1

The maximum (giant) fluctuation of the kinetic energy of a particle 
       

is generated in the region of the collapse 

2 4

max 2
0

( )
4collapse
GT T z
mu

d d= »




Li polycrystalline targets
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The forming crystalline monolayer should be located near the 
surface of the polycrystalline target.

If a nanostructure with a period of 10 microns of the transverse 
parabolic potential is used to form a correlated packet , then the 
distance to the collapse region increases up to 10-100 cm and 
more.
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Conclusion

This method (the use of an optimal one- or two-layer 
single-crystal graphene-type film located in front of an 
unstructured target) makes it possible to implement 
efficient nuclear fusion at a low optimal energy in nearby 
or remote unstructured (or unoriented) nuclear-active 
targets .

Thank you for attention
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For correlated packet wave function can be 
calculated:

{ } 2( , , ) ( ) ( , ,0)exp / , / 2
corr corr p p px z t c p x z iE t dp E p mY = Y - =ò 

2
*

23 2 24

2 2

2

1( ) ( ,0) ( ) exp /
24

exp
2

corr p
x gc p x x dx ipx dx
uu

u p u
gg

-¥ +¥

-¥ -¥

ì ü
= Y Y = - + =í ý

p î þ
ì ü
-í ý

p î þ

ò ò 




2
2 2 2

/2 0
2

( )( , ) ( ) exp
2 2corr corr

ip t m p p uu ip tc p t c p e
g mg

- ì ü-
= = - -í ý

p î þ


 



0

0

2

2 22

2

2 2 22 2

1( , , ) exp
2 (1 / ) /(1 / )

1 (1 )exp
2 [(1 / ) / ][(1 / ) / ]

corr

ip z

ip z

xx z t e
u i tg mu gitg mu u

x i e
u t mu it mut mu it mu u

ì ü
Y » - =í ý+î þ+ p

ì ü+ r
-í ý-r +î þ-r + p



  

2
2

2 2 2 2 22 2

2 2

1| ( , , ) | exp
[(1 / ) ( / ) ]

1
corr

xx z t
u t mu t mut tu

mu mu

ì ü
Y = -í ý-r +î þì ü ì üp -r +í ý í ý

î þ î þ

  

From the analysis of this expression  follows that during the movement of 
the correlated packet significant evolution of its structure takes place
It differs correlated packet evolution from the monotonic spreading of the 
uncorrelated packet



Spatial width of the correlated packet:
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Evolution of uncorrelated wave  packet              t

t0 = 0 < t1 < t2 < t3 < t4 < t5 < t6 < t7 < t8

Evolution of correlated wave  packet                  t

tcollapse



Synchronously with a decrease in the packet 
width up to the collapse region, its 
amplitude sharply increases
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Average particle momentum and energy 
fluctuation
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The momentum dispersion σр and the corresponding root-mean-
square fluctuation of the kinetic energy of the correlated increase 
with the increase of correlation coefficient and correlation efficiency 
coefficient:
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• Proton
Uncorrelated proton beam

u = 0.1 nm

δТ = σр/2m = h2/4mu2 ~ 10–3 eV

G = 103

Correlated proton beam

δТ = ћ2G2/4mu2 ³ 10 keV



•Considered above  features of the correlated wave packet make it 
possible to predict the possibility of its use for a number of applied 
and fundamental problems.

Along with the collapse on a specific distance, the creation of such a 
packet is accompanied by a significant increase of its kinetic energy 
fluctuations, which can be many orders of magnitude higher than the 
average motion energy of the packet itself. This may allow them to 
be used for nuclear reactions even at low particle energies.
•
The importance of correlated states and their fundamental difference 
from uncorrelated superpositional states: 
•such states may have great fluctuations of energy that can exist for 
a long time without violating the law of conservation of energy.



For correlated packet wave function can be 
calculated:
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Features of the formation of CCS during interaction of slow protons with 
molecules and clusters in lithium vapor
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with the optimal velocity. All quantities correspond to diatomic molecules with the 
following parameters: a1) – e1) - az / u = 4; a2) – e2) - az / u = 5; a3) - e3 - az / u= 6
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Such approach is idealized!


